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Abstract
Purpose of Review Epidemiologic research is rarely based on a random sample of a well-defined target population. We used
causal directed acyclic graphs to demonstrate the types of bias that can result when selection into that sample is associated with
the exposure or outcome of interest, or with both. These selection mechanisms can affect both the internal and external validity of
a study. We reviewed approaches to selection mechanisms that affect valid causal inference.
Recent Findings Wenoted that selection bias can refer to a number of issues with different consequences.We identified strategies
for addressing selection bias when designing studies, collecting data, conducting analyses, and assessing possible bias in those
analyses.
Summary Understanding the way in which a study sample relates to the target population is critical for avoiding and addressing
bias. Communication about selection bias is aided by the use of causal graphs.
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Introduction

Selection bias is one of the primary biases in epidemiology,
but it remains more of a mystery than confounding or mea-
surement error. One reason may be the epidemiologic tradi-
tion of classifying selection biases by their origin stories—
non-response bias, follow-up bias, prevalent-user bias, volun-
teer bias, self-selection bias, survivor bias, Berkson’s bias,
incidence-prevalence bias, control-selection bias, index-
event bias—instead of as a single phenomenon. At the same
time, the term “selection bias” itself appears overused.
Different definitions have emerged out of different fields;
what economists often call selection bias is what epidemiolo-
gists know as confounding. Other social scientists may pri-
marily use the term to refer to the non-representativeness of a
sample, and some epidemiologists strictly mean collider-
stratification bias.

Nevertheless, progress has been made toward a unified
theory of selection bias. While in the past epidemiologists
used 2 × 2 tables to make their selection bias arguments
[1–4], recent work has used causal directed acyclic graphs
(DAGs). Notably, Hernán et al. used DAGs to demon-
strate a structure shared by selection biases [5], Didelez
et al. used graphs to derive conditions under which
outcome-dependent sampling does not induce selection
bias [6], and Bareinboim and colleagues have described
graphical criteria under which causal effects can be recov-
ered from sample selection [7–9]. Such work is critical as
data sources and study designs evolve. An understanding
of the structure of selection bias enables us to measure the
appropriate covariates, avoid poor design and analysis
choices, and conduct meaningful sensitivity analyses.

A recent review on selection bias described the condi-
tions necessary for using data from a non-random sample
of the target population to (a) estimate a valid causal ef-
fect and (b) generalize it to the target population [10•].
These two processes are often referred to as satisfying
internal and external validity, respectively [11••]. This
review will focus on providing intuition to differentiate
the selection mechanisms that affect each type of validity,
and on describing recent methodological developments to
address internal validity.
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Preliminaries

Terminology and Notation

Suppose we are interested in describing the causal effect of
exposure A on outcome Y in some target population. Because
we cannot measure A, Y, and other random variables V on
every person in the target population, we select a study sample
from this population. If simple random sampling is used, we
can say that the study sample is representative of the target
population. Other systematic forms of sampling can also result
in representativeness once the sampling design is accounted
for, e.g., with inverse probability of sampling weights [12].
However, study samples are often not the result of explicit
sampling of a target population, perhaps because participants
were chosen out of convenience or some did not consent to
participate. In other cases, it may be that the target population
is defined by some cohort on which data has been collected,
but loss to follow-up or other forms of missing data have
resulted in an analytic sample that is no longer representative
of that target population.

We can imagine that however the selected sample came to
be, it is representative of some subset of the target population
that has the same joint distribution of A, Y, and V, whether
measured or unmeasured.1 We will call this hypothetical pop-
ulation the selected population. The study sample may com-
prise the entire selected population, or we can think of it as a
simple random sample from the selected population. For ex-
ample, if younger people are less likely to participate in a
survey, then the selected population is a subset of the target
population with the same age structure as the study sample.
Finally, we will assume that apart from possible selection bias,
other assumptions for identifying causal effects have been
met.

Directed Acyclic Graphs

We will use DAGs as a tool to understand and differentiate
types of selection bias. A now classic paper by Hernán et al.
described structural selection bias via DAGs [5]. DAGs con-
tinue to be an important tool for reasoning about selection bias
[14]. In particular, they can be useful for conveying concepts
such as the distinction between selection bias and confound-
ing [15] and how terminology commonly used in the realm of
trials relates to concepts in observational epidemiology [16••].
Complete graphical conditions for identifying causal effects
from selection biased data and determining when and what
external data is necessary to generalize those effects to a target
population have been derived [7–9]. DAGs actively aid

research into what estimands can be identified in the presence
of selection into trials [17] and into surveys [18••].

Each random variable, or vector of random variables, is a
node on the graph, and each directed edge represents a
(possible) causal relationship between two nodes. Besides
the variables of interest in the study, we can include selection
nodes S on the DAGs, as in Figs. 1, 2, and 3. For a given
observation, this may represent explicit selection into a study
sample or simply whether or not a participant has complete
data or is lost to follow-up. We will denote this with S = 1 for
members of the selected population and S = 0 otherwise. In the
figures, the selection nodes are boxed to represent the fact that
the analysis is conditional on S = 1.

A Taxonomy of Selection Bias

An example of selection without bias can help distinguish
the two overarching phenomena referred to as selection
bias. Suppose that A has been randomly assigned in the
target population, but that observations with some value
of A are preferentially selected in the study sample
(Fig. 1a). For example, consider a trial that recruits a
large sample, then, due to resource concerns, limits
follow-up (S = 1) to the entire treatment arm but a small
number of participants in the placebo arm. Within this
selected population, the exposure groups are still, on av-
erage, balanced with respect to measured and unmeasured
baseline characteristics—there are just more of one group
than the other. This grants us internal validity: it allows us
to use the study sample to estimate the average causal
effect of A on Y for the selected population. There is no
selection bias because we can validly estimate a causal
effect for the selected population.

Next, since selection is only affected by exposure—among
the placebo arm, follow-up was random—it is random within
exposure groups. Apart from exposure, measured and unmea-
sured characteristics are again balanced, now across the se-
lected and non-selected groups. We therefore have external
validity as well: we can use our estimate of the causal effect
in the selected population to infer the presence and magnitude
of a causal effect in the total population, so there is no selec-
tion bias.

Although the two levels of so-called selection bias are
different, the same term may be used for both scenarios,
although many epidemiologists prefer to refer to the sec-
ond as a lack of generalizability. The latter may affect
descriptive as well as causal measures. This review will
focus on the type of selection bias affecting internal va-
lidity, but it is instructive to walk through a taxonomy of
selection bias to gain intuition about when the methods
discussed can and should be applied.

1 The related problem of transportability refers to the situation in which the
study sample is not a subset of the target population [13], but we will not
consider this further.
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Failure to Generalize

In Fig. 1 b and c, the causal effect of exposure A on outcome Y
is identifiable conditional on confounders V because V blocks
all non-causal paths between A and Y. If there were no selec-
tion, we could, for example, use standardization to identify the
average effect in the target population on the additive scale as
∑
v

E Y jA ¼ 1;V ¼ vð Þf −EðY jA ¼ 0;V ¼ vÞg Pr V ¼ vð Þ
(with the sum replaced by an integral for continuous V).
That is, we average the difference in average outcomes be-
tween the exposure groups over the distribution of V in the
population. In Fig. 1 d, which could represent a randomized
trial, conditioning on V is not necessary but the same identi-
fying expression can be used.

Because conditioning on S does not open any new paths
between A and Y in any of the three DAGs, we can also
identify a causal effect within the S = 1 population, for exam-
ple with ∑

v
E Y jA ¼ 1;V ¼ v; S ¼ 1ð Þf −EðY jA ¼ 0;V ¼ v;

S ¼ 1Þg Pr V ¼ vjS ¼ 1ð Þ. However, even though the differ-
ence in average outcomes does not differ between the selected
and the total population for any level of V (because E(Y∣ A =
a, V = v) = E(Y∣ A = a, V = v, S = 1) for both exposure values),
we would expect the distribution of V to differ in the selected
population, so that Pr(V = v ∣ S = 1) does not equal Pr(V = v).
This can occur because in each of graphs 1b–d, V is a cause of
selection, directly or indirectly through A. As such, its distri-
bution in the selected population will reflect this preferential
selection of some value(s) of V. Unless the causal effect on the
scale of interest is homogeneous across all values of V, the
average effect in the total population will differ from that in
the selected population.

External information on the distribution of V can be used to
generalize the internally valid conditional causal effects esti-
mated from the study sample. This requires every level of V in
the target population to be represented in the selected popula-
tion. It also requires, of course, the existence of such external

data. Consider Fig. 1 d, where adjustment for V is not neces-
sary to estimate valid causal effects for the selected popula-
tion. In fact, V may include post-baseline characteristics (that
aren’t affected by exposure); as non-confounders, investiga-
tors may not have planned to measure them. Compared with
the target population, the selected population will then have a
different distribution of V, and if V is not known or measured,
it may be impossible to characterize the selected population
and generalize the causal effect to the target population. This
situation has been referred to as selection bias “off the null”
because unlike the situations that follow, bias will not occur if
the exposure-outcome effect is null for every individual [19].
In other words, this structure allows for valid null hypothesis
tests of the causal A–Y relationship, but not for valid estima-
tion of the magnitude of effect in the total population.

Conditioning on a Collider

Conditioning on a collider generally biases inference even in
the selected population. In the DAGs in Fig. 2, S is a collider,
or a descendant of a collider, because there are two edges
entering that node or one that causes it (DAG 2b). When S
or any other collider is conditioned on, whether through re-
striction, stratification, or regression modeling, a non-causal
association is usually (though not always [5, 20]) induced
between variables causing it. The direction and magnitude of
that association can be difficult to predict and has been a topic
of great interest [21–23, 24•]. Even when this induced associ-
ation is not between the exposure and outcome, it can create
bias by opening up other non-causal pathways between the
two variables, much as confounding does.

In Fig. 2 a, as in Fig. 1 d, selection is affected by a cause of
the outcome V, but here it is also affected by the exposure. For
example, consider a study in which education A reduces risk
of early mortality (S), and only those alive in old age are
eligible for a study on dementia (Y). However, those that sur-
vive differ with respect to risk factors for dementia (V).

a) c)

b) d)

Fig. 1 Directed acyclic graphs
(DAGs) depicting various
selection mechanisms, where A is
the exposure and Y the outcome
of interest and S is an indicator of
selection into the sample. V
consists of other variables that
may be measured or unmeasured.
DAG a does not lead to biased
inference in either the selected or
the target population. Without
proper adjustment for V, DAGs
b–d may lead to biased inference
in the target population but valid
inference in the selected
population
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Conditioning on selection—in this case, survival—induces an
association between V and A, creating a non-causal path from
A to Y. This means that education could appear to increase risk
of dementia even if it had no causal effect for any person. If V
is measured, proper adjustment can allow for valid inference
in the selected population, and external data on the distribution
of V in the target population can allow for generalization.

However, when S represents survival, as in our example, this
type of correction is equivalent to an intervention in which no
one is subject to early mortality [25].

A similar structure is presented in Fig. 2b. In this case,
although selection is a not collider, it is affected by one (V1),
w h i c h a l s o i n d u c e s b i a s . F o r e x a m p l e , a
pharmacoepidemiologic study may compare current users of

Fig. 2 Directed acyclic graphs (DAGs) depicting various selection
mechanisms, where A is the exposure and Y the outcome of interest and
S is an indicator of selection into the sample. V consists of other variables
that may be measured or unmeasured. These DAGs depict situations that
could lead to bias even in the selected population without proper
adjustment. The main text describes several studies that correspond
with these selection mechanisms (though additional nodes for
confounders would likely exist on DAGs for these studies). DAG a
could represent survival bias as described in the text, in which
education A affects early mortality (S), and only those alive in old age
are eligible for a study on dementia (Y). Common causes V of mortality
and dementia can lead to bias, though the interpretation of an estimand
that adjusts for that bias is not straightforward. DAG b could represent a
prevalent-user design, in which A is initiation of a drug, V1 is continued
use, and S is selection into a study of prevalent users. Common causes V2

of continued use and the outcome Y, such as underlying health conditions,
could lead to selection bias if not taken into account. DAG c could
represent an index-event study that gives rise to the phenomenon
known as the obesity paradox. Here, A is obesity, S is the condition

describing the population of interest (e.g., individuals with heart or
renal disease), and Y is mortality. Failing to adjust for common causes
of the index condition and mortality can lead to bias in the direct effect of
obesity on mortality. DAG d could represent a study of the effect of
antidepressants (A) on lung cancer (Y) conducted among people with
coronary artery disease (S). If common causes of exposure and
selection, such as depression (V1), and common causes of selection and
the outcome, such as smoking (V2), are not adjusted for, M-bias can
result. DAG e could represent a study of HIV treatment initiation
timing on the risk of pre-term birth. A is treatment timing, which leads
to selection S in that women who fail to initiate before or early in
pregnancy are excluded, and Y is pre-term birth, which also leads to
exclusion of women when birth occurs before treatment initiation. DAG
f could represent a situation where a test-negative design could be useful.
A could be influenza vaccination, Y influenza-like illness, S influenza
testing, and Vfactors such as health-seeking behavior; restriction to
patients with such behavior (i.e., conditioning on V) can avoid selection
bias
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a drug to those who have never used it, excluding those who
no longer use it, perhaps due to side effects (V1). If discontin-
uation of the drug was affected by causes of the outcome of
interest, V2, then selecting on a descendent of a collider by
restricting to current or never users can open a non-causal path
between exposure and outcome, and the drug could appear
associated with the outcome even if its effect is null.

Selecting or conditioning on a variable on the causal path
between A and Y, or on something caused by such a variable,
can bias estimates of the total effect. However, Fig. 2 c is an
example of a situation in which a direct effect may be the
estimand of interest. That is, we are interested in the effect
of A on Y while a fixing a mediating variable on the path
between them to a specific value. Here, S represents the re-
striction of the study sample to participants with that value of
the mediator. For example, there has been much epidemiolog-
ic interest in the effect of obesity (A) on mortality (Y), among
people with heart disease (S) [25]. In some cases, a direct
effect can be validly estimated by simply conditioning on
the mediating variable, as would occur if the study sample
was exclusively people with heart disease. However, in the
presence ofmediator-outcome confounders, as depicted in this
causal diagram with the variable V, bias can result if they are
not adjusted for.

M-bias is the name given to the structure in Fig. 2d.
Researchers may restrict a study to participants with certain
characteristics in an attempt to reduce confounding or may use
a sample recruited for another purpose to investigate a second-
ary hypothesis. For example, consider a study of antidepres-
sant use (A) on lung cancer (Y) among a sample of people with
coronary artery disease (S) [26]. Restricting to this group may
seem reasonable because S is associated with A and Y yet is
not on the causal pathway. However, conditioning on S opens
up a path between exposure and outcome through V1 and V2—
for example, depression and smoking. Even if the study is not
restricted to participants with S = 1, including a term for S in a
model in an attempt to adjust for confounding can result in
collider-stratification bias unless either of or both nodes of V
are also conditioned on.

Finally, Fig. 2 e and f depict the structure of biasmost likely
to occur in case-control studies, in which selection is, by def-
inition, based on outcome status. Figure 2 e is sometimes

called Berkson’s bias: selection is affected by both exposure
and outcome. For example, in a study of HIV treatment initi-
ation timing (A) on the risk of pre-term birth (Y), excluding
women who fail to initiate treatment before birth also means
excluding those with shorter pregnancies, as they are more
likely to not have been treated [27]. Unlike the other forms
of collider-stratification bias represented in previous graphs,
the selection bias represented here cannot be corrected by
properly adjusting for a covariate. Instead, the selection prob-
abilities for every exposure-outcome combination must be
known to validly estimate a causal effect. Figure 2 f occurs
when a common cause of exposure and selection exists; mea-
suring or restricting analysis to a certain value of V can avoid
control-selection bias. A study of vaccine effectiveness may
compare odds of vaccination (A) among those who test posi-
tive for the flu (Y) with healthy controls. If the controls are less
likely both to get vaccinated and tested for the flu than the
population from which the cases arose, selection bias can re-
sult due to the path opened through healthy behaviors V.

Descriptive Measures of Frequency

Equally important to epidemiology as inferring causation is
describing a population. Descriptive measures may be mea-
sures of association like risk differences or odds ratios, but
often we are interested in measures of frequency, such as
prevalence or incidence. In the latter case, we are only con-
cerned with the conditional distribution of Y given selection,
and not the A–Y relationship. For example, we may be inter-
ested in using the study sample to estimate the prevalence of a
disease in the target population. Unless we are trying to esti-
mate this prevalence under a hypothetical intervention, we
need only worry about generalizing descriptive inference,
rather than causal inference, from the selected population to
the target population.

The DAGs in Fig. 3 depict three simple situations in which
estimating some aspects of the distribution of Y could be af-
fected by selection. If Y is independent of selection (Fig. 3a),
no correction is needed; if Ydepends on selection via V (Fig.
3b), descriptive measures could be corrected using data on V,
as with associational measures from the distributions depicted
by the DAGs in Fig. 1b–d. If selection depends directly on Y

Fig. 3 Directed acyclic graphs (DAGs) depicting various selection
mechanisms in studies of the distribution of Y. S is an indicator of
selection into the sample. In DAG a, Y is independent of selection, so
its distribution conditional on S is equal to its marginal distribution. In
DAG b, the distribution of Yis expected to be different in the selected and

non-selected populations, but external data on V can be used to
standardize the distribution to the total population. In DAG c, the
distribution of Y is expected to be different in the selected and non-
selected populations, but cannot be corrected with simple standardization
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(Fig. 3c), even descriptive inference about the population re-
quires additional assumptions.

Addressing Selection Bias

In this section, we will focus on the first stage of inference:
from the study sample to a causal effect in the selected popu-
lation. There also exists an extensive cross-disciplinary litera-
ture on generalizing both descriptive and causal measures
from a sample to a target population that we will not describe.
Several key articles in epidemiology include those by Cole
and Stuart [28] and Lesko et al. [13], as well as others’ con-
tributions to assessment of generalizability [29], sensitivity
analysis [30], and a tutorial on estimation [31••].

Design Considerations

Ideally, selection bias could simply be avoided in the design or
data collection stage. Although some form of selection is al-
most inevitable when working with humans, changes to sam-
pling methods and extra effort in tracking down participants or
collecting data on suspected common causes of non-response
and the outcome can help prevent bias. Additional variables to
measure may also include negative control exposures and/or
outcomes that aren’t expected to induce the same selection
bias as the study variables. Arnold and colleagues have de-
scribed the characteristics of valid negative controls for selec-
tion bias using DAGs [32•].

As traditional approaches to recruiting participants and
collecting information have declined, internet-based strategies
have emerged. Such strategies provide benefits in speed, ease
of data management, and reduced measurement error [33],
although concerns about selection bias naturally follow. A
number of longitudinal cohorts have been recruited via the
Internet [34–36] and have reported reduced costs compared
with offline recruitment [34] and limited selection bias [36].

Creative ways of sampling controls that represent exposure
in the source population remain important in preventing selec-
tion bias in case-control studies. For example, there has been
recent interest in test-negative designs [37] for vaccine (pri-
marily influenza) effectiveness research. Such studies use pa-
tients presenting with influenza-like illness who test negative
for influenza as controls and compare the odds of vaccination
with that in those who test positive—in essence, controlling
for factors that affect exposure and selection, as V does in Fig.
2f. Justification for the design has been given in the form of
DAGs [38], and comparisons of multiple control groups have
supported its use [39, 40], though concerns about bias and
generalizability have been raised [41, 42].

A concern that par t icular ly affects s tudies in
pharmacoepidemiology is the inclusion of participants with
prevalent vs. incident exposures, which can be addressed with

a new user design [43]. Studies that include prevalent users of
a drug of interest inevitably exclude former users who are no
longer taking that drug due to side effects, the drug not work-
ing for them, or other reasons (see Fig. 2b). The contrast of
only successful continued users of the drug to a comparison
group can lead to bias, as those in the treatment group most at
risk of poor outcomes may already have been selected out.
Researchers can avoid this bias by including only new users
of the treatment, which more closely replicates a trial where
participants start treatment at baseline [44, 45].

Index-event studies are those in which subjects are recruit-
ed based on, or a sample is restricted to individuals with, an
existing disease [46]. The “obesity paradox” is a well-known
example: among people with conditions affected by obesity,
such as renal or heart disease, obesity can appear to be pro-
tective against mortality [47]. Collider bias as depicted in Fig.
2c can result, as can an additional layer of selection due to
survival until diagnosis of the index disease [46]. One solution
is to measure all risk factors for mortality in such studies.

Survival bias is a specific type of selection bias that occurs
when the selected population comprises individuals who have
not yet died by the time of outcome ascertainment, or who
have survived another competing event. For example, a study
of education and dementia can only investigate dementia
among people who have survived to old age, and early-life
education may have affected that survival, as in Fig. 2a. While
methods for general selection bias can be used (see next sec-
tion), it is worth considering how the implied estimands can be
interpreted [48, 49], as well as alternative explanations. For
example, taking a composite outcome approach [50] to avoid
survival bias might reframe the question to ask about the effect
of education on death or a diagnosis of dementia. Survivor
average causal effects, which describe effects among people
who would hypothetically survive until outcome ascertain-
ment whether exposed or unexposed, are another option for
survival bias that some may find meaningful (see Tchetgen
Tchetgen et al. [51] for straightforward explanation and esti-
mation procedure, and Long et al. for an application [52•]).
These are just two examples of possible approaches to surviv-
al bias from a broader literature; Young et al. [53••] provide a
thorough explanation of causal effects in the presence of com-
peting risks.

Finally, designing a study according to a target trial frame-
work can help avoid selection and other biases [54]. For ex-
ample, Stoner et al. describe an observational study design
comparing risk of pre-term birth in pre-conception vs. post-
conception antiretroviral therapy in HIV-infected pregnant
women [27]. All women who give birth before initiating ther-
apy are excluded. Because both exposure (timing of treatment
initiation) and outcome (timing of birth) affect selection, as in
Fig. 2e, bias can result. If we consider the equivalent trial,
treatment would be assigned pre-conception and outcomes
would be ascertained in each arm regardless of whether or
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not women initiated therapy before giving birth. Several
methods which use this target trial framework to address ques-
tions of treatment timing without inducing bias have been
described [55, 56].

Analytic Strategies for Addressing Selection Bias

Options for approaching selection bias in the analysis depend
on the data available. When the common causes of selection
and the outcome have been measured, in some situations they
can simply be included in the outcome regression model to
estimate valid conditional causal effects [57]. In amissing data
framework, these are the situations in which a “complete-
case” analysis can be used without bias. Due to the nature of
logistic regression models, this is more often the case when
fitting those models [58]. However, since this technique relies
on the same model to adjust for selection bias and confound-
ing, model misspecification may be a concern. Also, time-
varying exposures require more advanced methods.

Multiple imputation can also be used in missing data situ-
ations when a complete-case analysis would lead to selection
bias. Moreno-Betancur et al. use DAGs to distinguish missing
data situations in which various parameters of interest are
recoverable with complete-case analysis and others which re-
quire multiple imputation or are not recoverable without bias
[59]. Multiple imputation, which averages estimates over
many imputed datasets, can be computationally intensive with
large datasets, but is now widely available in statistical soft-
ware packages. The reader is directed to other overviews of
multiple imputation in epidemiology [60, 61]. In general, the
missing data framework is a useful tool for understanding
selection bias, and several authors have made explicit connec-
tions [62–64].

Inverse probability weighting methods [65] are a common,
though possibly still underused [66], approach to correcting
for selection bias when predictors of selection are measured in
the non-selected as well as the selected group, as baseline
characteristics are before loss to follow-up. As these methods
have gainedmore popularity in epidemiology for confounding
adjustment, particularly for time-varying confounding, they
have proved to be useful in adjusting for selection bias as well.
Weighting approaches (often referred to as inverse probability
of censoring, attrition, or selection weighting) involve using
the portion of the sample with known outcomes to stand in for
those without data based on what was measured in both
groups.

A number of examples of weighting for selection are avail-
able in the epidemiologic literature: for example, in a fertility
study where some women stop treatment [67], to estimate
racial disparities in a cohort with loss to follow-up [52•], and
to correct for pre-hospital mortality in a study of mortality
after acute cardiac events [68]. As with inverse probability
weighting for confounding, the validity of the method

depends on the extent to which the selection model succeeds
at balancing measured covariates, and to which those covari-
ates account for selection. It cannot, of course, balance unmea-
sured causes of censoring. Jackson [69•] provides a method
for assessing measured covariate balance after applying
weights.

The method can also incorporate multiple mechanisms for
multiple stages of selection. For example, there may be mul-
tiple points at which participants are dropped or selected for
the study [70]. Because predictors of selection at each stage
might be different, they can be modeled separately. The esti-
mated weights are then multiplied together such that the re-
maining observations are upweighted by the inverse of the
joint probability that they made it through all rounds of selec-
tion. Other extensions include Sun and colleagues’ approach
for when the data are subject to non-monotone missingness,
meaning that selection does not necessarily occur progressive-
ly [71]. Finally, doubly robust approaches use both weights
and outcome regression to adjust for selection bias; validity
requires that at least one of either the weight model or the
outcome model is correctly specified [49].

Sensitivity Analysis

The previous section covered situations in which the predic-
tors of missingness are known and measured, either in just the
selected population or in the target population. Often, howev-
er, these variables may be unknown and unmeasured. Rather
than qualitatively describing the bias that those variables can
create, which is not always intuitive, it is useful to quantita-
tively assess the potential bias, both while planning the study
and analyzing the data [72]. In fact, it may be useful to con-
sider every analysis to be a sensitivity analysis, as the correc-
tion methods described previously rest on untestable assump-
tions [73].

A link from inverse probability weighting methods to sen-
sitivity analysis was proposed by Thompson et al., who de-
scribe how to specify sensitivity parameters for the selection
model that is used to estimate the probabilities in the weights
[14, 74]. Other sensitivity analyses directly parameterize the
selection probabilities [75, 76], a method used often in birth
defects research, where studies are usually restricted to live
births. For example, Patorno and colleagues provide a sensi-
tivity analysis to explore the possible effect that differential
termination of malformed fetuses would have on their study of
lithium in pregnancy and cardiac malformations [77]. In that
situation, there were a limited number of reasonable values for
the selection probabilities. Other situations may be more com-
plex, and by assigning probability distributions to various pa-
rameters describing selection, researchers can examine the
estimate they would have observed under a range of plausible
situations [78, 79]. For index-event studies, Stensrud et al.
alternatively suggest fitting frailty models, which allow
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exploration of the size of the bias due to selection based on the
index condition [80]. These models posit that mortality risk is
heterogeneous and that the source of that heterogeneity, “frail-
ty,” can be parameterized directly. In all of these analyses,
employing various experts to describe the plausible values
for the sensitivity parameters [81] may be useful to avoid a
tendency to only present those that are favorable to the study
hypothesis.

A number of different methods have emerged for bounding
the size of selection. Huang and colleagues describe a bound
for odds ratios estimated from case-control studies [82], while
Smith and VanderWeele propose bounds for the bias for the
causal effect in the total population [83], in the selected pop-
ulation only [83], and when the bias is due to improper selec-
tion of controls [84]. A related bound for M-bias can also be
extended to other selection bias structures [85]. External in-
formation, such as that from a census, can also be used in a
sensitivity analysis to estimate informative intervals [86].
Some of these bounds can be used to construct an E value–
like measure [87] that summarizes the minimum bias needed
to fully explain an estimate, if the true causal effect is null (or
some other value) [83, 85].

Finally, another approach toward unmeasured predictors of
selection was formulated by Heckman in 1979 [88], but the
selection models he developed are not often used in epidemi-
ology, possibly due to strong parametric assumptions and the
need for a measured instrument-like variable that predicts
missingness but not disease. An application to missing re-
sponses in HIV prevalence surveys is a notable exception
[89], and the question has helped generate extensions to the
method that relax some of the assumptions [90–92].
Additionally, West and McCabe compared several ap-
proaches for estimating prevalences of substance-use behav-
iors subject to non-response, including selection models,
weighting, and imputation [93•]. They suggested researchers
implement a series of these methods as a sensitivity analysis.

Conclusions

Selection bias can be seen either as a broad problem that
occurs any time we have non-random sampling of a target
population, or as a more narrow problem that does not allow
for valid causal inference even under the null hypothesis.
Whatever the lens used to view the phenomenon, it is worth
carefully describing what is meant by “selection bias”; this
may allow for more cross-disciplinary communication and
sharing of strategies to avoid, correct for, and analyze selec-
tion bias of whatever form. Asmany other authors have noted,
DAGs are a useful tool for doing so.

This review has taken a relatively narrow view of selection
bias by primarily considering simple exposure-outcome rela-
tionships. Others have considered selection bias in

instrumental variable studies [94, 95, 96•], including in the
case of Mendelian randomization [97]. Other study designs
and questions, such as self-matched designs [98], latent class
analysis [99], and life expectancy estimation [100] have their
own selection bias concerns. While randomized controlled
trials can be affected by selection bias due to loss to follow-
up, cluster-randomized designs [101] and multi-arm trials
[102] can result in other types of selection bias if randomiza-
tion occurs before participant selection or if treatment alloca-
tion can be predicted.

Because confounding is a more obvious culprit for non-
causal associations and is often simpler to address, selection
bias is often overlooked. While epidemiologists have long
been trained on how non-response can affect studies, new-
comers to data science in public health and elsewhere may
be more likely to neglect the fact that only rarely is a study
sample actually randomly sampled from a target population.
As we become more creative with collecting data from a va-
riety of sources and such data becomes more easily accessible,
it will be increasingly important to understand the population
on whom data is collected, and the population on which it is
not.
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