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Multiple-bias Sensitivity Analysis Using Bounds
Louisa H. Smith,a Maya B. Mathur,b and Tyler J. VanderWeelea,c   

Abstract: Confounding, selection bias, and measurement error are 
well-known sources of bias in epidemiologic research. Methods for 
assessing these biases have their own limitations. Many quantitative 
sensitivity analysis approaches consider each type of bias individu-
ally, although more complex approaches are harder to implement or 
require numerous assumptions. By failing to consider multiple biases 
at once, researchers can underestimate—or overestimate—their joint 
impact. We show that it is possible to bound the total composite bias 
owing to these three sources and to use that bound to assess the sen-
sitivity of a risk ratio to any combination of these biases. We derive 
bounds for the total composite bias under a variety of scenarios, pro-
viding researchers with tools to assess their total potential impact. 
We apply this technique to a study where unmeasured confounding 
and selection bias are both concerns and to another study in which 
possible differential exposure misclassification and confounding are 
concerns. The approach we describe, though conservative, is easier 
to implement and makes simpler assumptions than quantitative bias 
analysis. We provide R functions to aid implementation.

Keywords: Bias analysis; Causal inference; Differential misclassifi-
cation; Selection bias; Unmeasured confounding

(Epidemiology 2021;32: 625–634)

Assessing evidence for causation is fundamental to plan 
and target interventions and improve public health. 

However, many causal claims in epidemiologic studies are 
met with suspicion by both researchers and the general pub-
lic, owing to the fact that such studies are well known to be 
subject to various biases. Although faults in these studies 
can sometimes be addressed directly—for example, through 

better sampling schemes, blinded outcome ascertainment, 
more extensive covariate measurements, and so on—other 
times confounding, selection bias, and measurement error 
are unavoidable. In such situations, our next best option is 
to assess the extent to which a given study’s conclusions 
might be sensitive or robust to these biases and whether they 
threaten its conclusions. Often, however, this is limited to a 
few sentences in a discussion section qualitatively assessing 
the possibility of bias, sometimes appealing without quantita-
tive justification to heuristics that may or may not hold true in 
a particular study.1–3

The weak uptake of quantitative bias analysis in epi-
demiology belies its long history. Over a half century ago, 
Cornfield and then Bross argued that the extent of possible 
bias was quantifiable based on observed data and possi-
bly hypothetical quantities.4–7 Attempts to generalize these 
results, as well as consider other biases, sometimes simultane-
ously with confounding, followed.7–12 More recently, proba-
bilistic bias analysis methods have been developed, allowing 
researchers to propose distributions for various bias param-
eters across multiple biases and to explore how various com-
binations of those parameters would affect their results.13–18 
Despite the availability of these methods in textbook and soft-
ware form,16,19,20 the actual uptake of such quantitative bias 
analysis in empirical research has been limited,21 possibly 
because of the (at least perceived) computational complexity22 
or difficulty in proposing plausible distributions.

Even more recently, simpler approaches to sensitivity anal-
ysis have hearkened back to the early days of bias assessment, 
with the development of bounds for various biases that require 
limited assumptions and at most basic algebra.23–25 However, a 
one-at-a-time approach is not sufficient for many studies subject 
to multiple sources of bias. In this article, we extend the simple 
sensitivity analysis framework to multiple biases, describing a 
bound for the total composite bias from confounding, selection, 
and differential exposure or outcome misclassification.

THE PROBLEM OF MULTIPLE BIASES
We will describe a scenario in which all three types of 

bias are present, preventing the interpretation of an observed 
risk ratio as a causal risk ratio. Consider a binary exposure A, 
a binary outcome Y, and measured covariates C (C may also 
include unmeasured factors that are controlled by the study 
design). Let S be an indicator of the subset of the population for 
which data have been collected, and let A* and Y *  denote mis-
classified versions of the exposure and outcome, respectively. 
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We use potential outcome notation to describe causal quan-
tities: Ya  is the outcome that would occur were exposure A 
set to value a. We assume consistency, meaning that Y Ya =  
for observations for whom we observe A a= , and positivity, 
meaning that 0 < = 1 < 1Pr |A ⋅( )  within every stratum of the 
population.

We denote (conditional) independence between random 
variables with the symbol �, such that Y A Ca � |  implies con-
ditional exchangeability; that is, potential outcomes are inde-
pendent of exposure status conditional on C. However, when 
C does not capture all of the exposure–outcome confounding, 
it is not true that Y A Ca � | . We assume in that case that addi-
tionally adjusting for some unmeasured factor(s) Uc

 would 
be sufficient to address confounding so that Y A C Ua c� | , .  
Here, Uc  may be a single random variable or a vector of vari-
ables, which may be continuous or take on any number of 
discrete values, or some combination. Similarly, we allow for 
selection bias, which we define as a lack of the conditional 
independence Y A C U Sa c� | , , = 1  when it is otherwise true 
that Y A C Ua c� | , . We likewise assume that the measurement 
of some variable(s) Us , responsible for selection, would fully 
account for this bias, although the necessary conditions for it 
to do so will depend on whether we intend to make inferences 
about effects in the total population, or just the selected popu-
lation. Finally, we allow for the possibility that the misclassifi-
cation is differential, by which we mean that the sensitivity or 
specificity of the exposure measurement may differ depending 
on the value of the outcome, or that the sensitivity or specific-
ity of the outcome measurement may depend on the exposure. 
In our notation, this means that it is not necessarily true that 
A Y A C* ,� |  or that Y A Y C* ,� | . In this work, we consider 

only misclassification of the exposure or the outcome but not 
both at once.

MOTIVATING EXAMPLES
There is great interest in how exposures during preg-

nancy may affect offspring health. However important such 
questions are, they are difficult to answer with epidemiologic 
research. Ethics may limit inclusion of pregnant people in ran-
domized trials, and many exposures of interest are not ethi-
cal or feasible to randomize to anyone. Case-control studies 
can efficiently capture rare childhood outcomes but recalling 
pregnancy exposures several years later can result in measure-
ment error.26 Prospective cohort studies can avoid this recall 
bias but are often subject to loss to follow-up when the dura-
tion between exposure and outcome assessment is long.27 
Observational studies of all types are threatened by uncon-
trolled confounding, and intergenerational confounders are 
particularly difficult to assess.28 Importantly, studies like these 
are not affected by only one or another of these biases but may 
suffer from multiple threats to validity.

To demonstrate our sensitivity analysis approach, we 
will consider two questions about exposures during pregnancy 
and outcomes in children: whether HIV infection in utero 

causes wasting (low weight-for-length) and whether vitamin 
consumption during pregnancy protects against childhood 
leukemia.

Omoni et al29 investigated the former hypothesis con-
cerning HIV infection and wasting (among participants of a 
vitamin A supplementation trial in Zimbabwe) and found that, 
compared with children who were unexposed to HIV, those 
who had been infected with HIV in utero were more likely 
to be below a weight-for-length Z score of –2 as toddlers. 
The odds ratio comparing the two groups was 6.75 (95% CI, 
2.79, 16.31) at 2 years. Although randomized trial data were 
used for the analysis, this was an observational study with 
respect to HIV infection, since infection is not randomized. 
The authors did not, however, adjust for any confounders. 
Furthermore, since enrollment occurred at delivery, after pos-
sible HIV exposure and transmission, the choice of whether to 
participate could have been affected by HIV status as well as 
other factors, leading to selection bias if those factors affect 
future child growth. We will consider the role that confound-
ing and selection bias may play in this study.

As a second example, Ross et al30 analyzed the relation-
ship between vitamins and leukemia in a case-control study 
and found a decreased risk of acute lymphoblastic leukemia 
among children whose mothers consumed vitamin supple-
ments during pregnancy. Their reported odds ratio, which, with 
a rare outcome, approximates a risk ratio of 0.51 (95% CI 0.30, 
0.89), was conditional on maternal age, race, and a binary indi-
cator of education. However, there may be other confounders 
that were not controlled, such as other indicators of a privileged 
or healthy lifestyle that are both associated with vitamin use 
and protection against leukemia. We also may be concerned 
about recall bias (differential exposure misclassification)—that 
mothers of children with a cancer diagnosis might be more 
likely to report not taking a vitamin even if they did so—so 
we consider how exposure misclassification and unmeasured 
confounding can be assessed simultaneously.

THE MULTIPLE-BIAS BOUND
Two overarching types of bias analysis have been 

described: one that explores how biases of a given magnitude 
affect an estimate, which Phillips labeled “bias-level sensitiv-
ity analysis” and another that reduces the analysis to a sum-
mary of how much bias would be necessary for an observation 
to be compatible with a truly null effect (or some other speci-
fied nonnull effect), which he called “target-adjusted sensitiv-
ity analysis.”2 We focus on the former and address the latter 
in the eAppendix; http://links.lww.com/EDE/B824. Here, 
we present a multiple-bias bound, which allows researchers 
or consumers of research to explore the maximum factor by 
which unmeasured confounding, selection, and misclassifica-
tion could bias a risk ratio.

We begin with outcome misclassification and 
then extend our results to exposure misclassifica-
tion. We assume that the investigators have estimated 

http://links.lww.com/EDE/B824
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These bias parameters have been described elsewhere, 
although separately.23–25 Briefly, the bias parameter defin-
ing the misclassification portion of the bound ( RR

AY y S* , =1|
)  

describes the maximum of the false-positive probability ratio 
or sensitivity ratio within the selected population. The selec-
tion bias parameters ( RRUsY A a| =  and RRSUs A a| = ) describe the  

maximum factors by which the outcome risk differs by val-

ues of Us, within strata of A, and the maximum factors by 
which some level of Us  differs between the selected and non-
selected groups, within strata of A. Finally, the unmeasured 
confounding parameters ( RRUcY  and RR AUc

) describe the 
maximum factor by which Uc  increases the outcome risk, 
conditional on A, and the maximum factor by which exposure 
is associated with some value of Uc . Each of the sensitivity 
parameters is conditional on the covariates adjusted for in the 
analysis and so describes the extent of bias above and beyond 
those factors.

To simplify notation, define the function 

g a b
a b

a b
( , ) =

1

×
+ −

. Then, we have the following bound for 

the total composite bias.

Result 1:

If Y A C Ua c� | ,  and Y S A C Us� | , ,

then: RR RR BF BF BFobs true
AY AY m s c* / ≤ × ×

where BF RR BF RR RRm AY y S s UsY A SUs Ag= = ,* , =1 =1 =1| | |, ( ) ×  

g UsY A SUs ARR RR| |=0 =0,( ) , and BF RR RRc AUc UcYg= ,( ) . The  

derivation of this and the results that follow are given in the 
eAppendix; http://links.lww.com/EDE/B824.

Result 1 can be used to quantify the maximum amount 
of bias that could be produced by parameters of a given value. 
Values for the sensitivity parameters may be taken from vali-
dation studies, previous literature, or expert knowledge or pro-
posed as hypotheticals. Because the sensitivity parameters are 
maxima, they are always greater than or equal to 1, and the 
composite bound will thus be greater than or equal to 1. For 
an apparently causative observed exposure–outcome risk ratio 
(>1), one could divide the estimate and its confidence interval 
by the bound to obtain the maximum that the specified biases 
could shift the estimate and its confidence interval. For a pre-
ventive observed exposure–outcome risk ratio (<1), one could 
multiply the estimate and its confidence interval by the bound 
to obtain the maximum that the specified biases could shift the 
estimate and its confidence interval, or equivalently reverse 
the coding of the exposure to obtain a risk ratio >1. By apply-
ing the bound to the confidence interval closest to the null, we 
can make statements such as: “In 95% of repeated samples 
with the same sources of bias, adjusting the confidence inter-
val in this way would result in a lower bound that is less than 
the true causal risk ratio, provided the proposed parameter 
values adequately bound (i.e., are as large as or larger than) 
the true parameter values.”

Although the bound allows for terms for all three biases, 
if any of them is judged not to threaten a given study or to bias 
toward the null, that factor can be omitted. Furthermore, the 
selection bias term can be simplified under certain assump-
tions;24 we illustrate in the first example below.

Result 1 is summarized in the first row of Table 1. The 
assumptions required for the bound to hold are listed under 
the biases to which they pertain, and the bound itself is in the 
final column. Note that the factorization of the bound implies 
an ordering of the biases: the misclassification parameters are 
defined within the stratum S = 1. Intuitively, this corresponds 
to a study in which outcome measurement is done after people 
have been selected into the study and so requires considering 
the strength of differential misclassification only within that 
group. In general, we can think of biases as layers that we 
must peel off sequentially and the order in which we do so is 
the reverse of the order in which they occurred in the data.32,33 
Confounding is generally thought of as a property of nature 
within the population of interest, so occurs first (although 
if parameters describing the strength of confounding are 
derived based on misclassified exposure or outcome, that 
may not be the case32), but the order in which selection and 

http://links.lww.com/EDE/B824
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misclassification occur may depend on the study design. We 
could alternatively derive a bound that depends on a parameter 
describing the extent to which the outcome is misclassified in 
the total population, and on others describing how selection is 
associated with the misclassified outcome. These parameters 
may be more intuitive in a study with case-control sampling. 
Additionally, another ordering of the biases may be prefer-
able if data exist to justify estimates of the alternative param-
eters. We define those alternative parameters and derive that 
bound in the eAppendix; http://links.lww.com/EDE/B824. 
The second row of Table 1 summarizes those results; there, 
the assumption for selection bias is an assumption about the 
misclassified outcome, and the bound in the final column is 
defined in terms of parameters that reflect that ordering.

Example
We illustrate the use of the multiple-bias bound to assess 

possible bias in the study by Omoni and colleagues regarding 
the effect of HIV status on wasting.29 Wasting is defined by 
weight-for-length Z score of –2 or below and is a rare out-
come, so we can interpret the reported OR of 6.75 (95% CI, 
2.79, 16.31) as an approximate risk ratio. Since we have no 
reason to believe that misclassification of wasting was dif-
ferential by exposure status (i.e., child or mother HIV status) 
status, and nondifferential outcome misclassification would on 
average bias toward the null in this situation,9 we will focus on 
unmeasured confounding and selection bias in this example.

The choice of whether to participate in the trial, and 
therefore in the analysis in question, may have been influenced 
by prior maternal HIV status. For example, people with HIV 
infection may be hesitant to enroll owing to stigma regarding 
infection or fear of confirming their status. Other factors may 
affect enrollment as well: parents with food insecurity may be 
more likely to enroll in a vitamin-supplementation trial than 
those without if they think it will improve their children’s 
nutrition. This benefit could outweigh the hesitancy for some, 
resulting in selection bias: if a mother in the study is living with 
HIV, it is likely that her family is also food insecure, making 
her child more at risk of wasting. Participation in the trial is 
therefore a collider in a directed acyclic graph describing these 
relationships, as shown in Figure 1. Similarly, there are factors 
that are associated with HIV status that may also affect wast-
ing; if these are not on the causal pathway, we may be worried 
about unmeasured confounding. The authors did not adjust for 
parity or marital status, although they report that primiparous 
women were less likely to have HIV, as were married women. 
We may be concerned that children in single-parent households 
and those with more siblings are at higher risk of wasting. To 
demonstrate interpretation of the bound, we will propose values 
for the parameters describing the strength of these relationships 
based on the data presented in the original article as well as our 
background knowledge.

Suppose that the most vulnerable in the population were 
more likely to participate in the trial, and thus that wasting 

is more likely in children of participants than of nonpartici-
pants, both among those with HIV as well as those without. 
The assumption that the outcome is more likely in the selected 
population of both exposure groups allows us to simplify the 
selection bias component of the bound, so that the bound-
ing factor only relies on two selection terms, as described 
by Smith and VanderWeele.24 Suppose now that children of 
the most food-insecure mothers are 3 times as likely to have 
extremely low weight-for-length scores than the least likely 
group so that RRUsY A| =1 = 3  and that the mothers with HIV 

infection in the study compared with those not in the study 

are twice as likely to be food insecure so that RRSUs A| =1 = 2 .

Although the odds ratios from this study were not 

adjusted for parity and marital status, the authors reported pro-
portions of these characteristics stratified by exposure,29 which 
can aid in coming up with a reasonable value for RR AUc

. For 

example, suppose we estimate that 3% of the women whose 

infants are infected with HIV are multiparous and unmarried, 
but that this is true of 7% of the women without HIV. If this is 

FIGURE  1.  DAGs depicting the examples described in the 
text. A, This DAG depicts unmeasured confounding (due to 
Uc ) and selection bias (due to Us ). In the graph, the assump-
tions Y A U Sa s� | , = 1  and Y A Ua c� |  are met. This corresponds 
to the first example in the text, where A indicates HIV infec-
tion, Uc  family factors including parity and marital status, S 
participation in the trial, Us  food insecurity, and Y wasting. 
B, This DAG depicts unmeasured confounding (due to Uc ) 
and differential misclassification of the exposure (due to the 
Y A→ *  edge). In the graph, the assumption Y A C Ua c� | ,  
is met. This corresponds to the second example in the text, 
where A indicates vitamin consumption during pregnancy, A*  
reported vitamin consumption, Uc  breastfeeding, C maternal 
age, race, and education, and Y child leukemia. DAGs indi-
cates directed acyclic graphs.

http://links.lww.com/EDE/B824
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the family situation with the largest disparity between expo-
sure groups, then we can specify RR AUc

= 2.3 . Now suppose 
that children in these most precarious families have 2.5 times 
the risk of wasting than those in the least precarious, so that 
RRUcY = 2.5 .

Then, we can calculate the bound as 
3 2

3 2 1

2.3 2.5

2.3 2.5 1
= 2.27

×
+ −

×
×

+ −
. If those are the only sources 

of selection bias and unmeasured confounding, and there is 
no measurement error, then this amount of bias cannot fully 
explain the approximate observed RRobs

AY  of 6.75, since 
6.75/2.27 = 2.97. Of course, this observed value is subject to 
statistical uncertainty, so we can also consider the lower limit 
of the confidence interval, 2.79. If the proposed parameter 
values hold, then even in the worst-case scenario, RRtrue

AY  is 
still consistent with 2.79 / 2.27 = 1.23 , an increase of about 
23% in risk of wasting at 2 years of age owing to HIV infec-
tion. However, the parameter values, we used represent only 
a single reasonable choice. We might proceed by exploring a 
range of values, as we demonstrate below when we introduce 
software.

EXPOSURE MISCLASSIFICATION
When differential exposure misclassification is a con-

cern, we can derive a similar bound under similar assumptions. 
However, unlike the bound for outcome misclassification, the 
bound for exposure misclassification that is used applies to the 
odds ratio, not the risk ratio, and the sensitivity parameters are 
also not themselves risk ratios.25 We therefore cannot factor 
the observed risk ratio as in the previous section. However, 
for a sufficiently rare outcome, odds ratios approximate risk 
ratios, which allows for some progress.

In this section, RRobs
A Y

Y A S c

Y A S c*

*

*
=

= 1 = 1, = 1,

= 1 = 0, = 1,

Pr |

Pr |

( )
( )  

refers to the observed (approximate) risk ratio under exposure 
misclassification, when the outcome is rare in the selected 
population. Denote with OR

A Y y S* , =1|
 the largest out of the 

false-positive odds ratio ′ ′{ } − ′ − ′{ }f f f f1 0 1 0/ / (1 ) / (1 ) , the 

sensitivity odds ratio ′ ′{ } − ′ − ′{ }s s s s1 0 1 0/ / (1 ) / (1 ) , the cor-

rect classification ratio { / } / {(1 ) / (1 )}1 0 1 0′ ′ − ′ − ′s s f f , and 
incorrect classification ratio ′ ′{ } − ′ − ′{ }f f s s1 0 1 0/ / (1 ) / (1 ) ,  

where ′f A Y y A S cy = ( = 1 = , = 0, = 1, )*Pr |  and 

′ ( )s A Y y A S cy = = 1 = , = 1, = 1,*Pr | . Then the following 

bound holds approximately; that is, to the extent that the odds 
ratio approximates the risk ratio.

Result 2:

If Pr |Y A a S c= 0 = , = 1, 1*( ) ≈

and Pr |Y A a S c= 0 = , = 1, 1( ) ≈
then:

RR RR BF BF BFobs true
A Y AY m s c* / ≤ × ×

where BF ORm A Y y S
= * , =1|

 and BFs  and BFc  are as previously 
defined.

This result is summarized in the fourth row of Table 1, 
as are extensions involving exposure misclassification.

Example
We can jointly assess the magnitude of bias owing to 

differential recall of vitamin use and unmeasured confounding 
in the study of leukemia risk by Ross and colleagues, in which 
RRobs

A Y* = 0.51  (95% CI 0.30, 0.89), by proposing realistic val-
ues for the bias parameters. A probabilistic bias analysis for 
misclassification was previously done in relation to this study, 
in which Jurek et al conducted a literature search for valida-
tion studies of multivitamin use during the periconceptional 
period.34 They found no pertinent articles and instead used 
expert knowledge and bounds from the data (e.g., by assum-
ing correct classification is better than chance) to propose 
distributions for false negative and false-positive probabilities 
for the cases and controls, which we can use to inform our 
choice of parameters. Because we think the case-control dif-
ferential in false negatives is stronger than that for false posi-
tives, we might choose that Pr |A Y A* = 0 = 1, = 1 = 0.15( )  
and Pr |A Y A* = 0 = 0, = 1 = 0.1( )  to compute BF′m . Since 
we are dealing with a possibly protective factor, however, 
and the bound is greater than 1 by definition, we reverse the 
coding of the exposure to reflect that the original estimate of 
RRobs

A Y* = 0.51  represents a 1/ 0.51 = 1.96 -fold increase in 
risk associated with not taking vitamins. Therefore, ′f1 = 0.15  
and ′f0 = 0.10 , and BF′m = 1.59 .

Jurek et al’s probabilistic bias analysis used the crude 
2-by-2 table from the original article, so did not take into 
account even the few measured confounders.34 However, 
even those measured confounders would likely not be suffi-
cient to control for confounding by healthy lifestyle, as there 
is evidence that other healthy behaviors are associated with 
leukemia. For example, a recent meta-analysis found that 
not breastfeeding compared with breastfeeding for at least 6 
months was associated with an increase in acute lymphoblas-
tic leukemia risk by a factor of 1.22.35 Using breastfeeding as 
a proxy for healthy lifestyle, for the unmeasured confounding 
parameters, we will take RRUcY = 1.22  and RR AUc

= 2 , sug-
gesting that children who were not breastfed are 1.22 times as 
likely to get leukemia, and that mothers who take multivita-
mins are twice as likely to breastfeed than those who do not. 
A directed acyclic graph depicting this example is shown in 
Figure 1.

Using these values, we find that 1.59
1.22 2

1.22 2 1
= 1.75×

×
+ −

,  

indicating that the observed risk ratio may be biased by a 
factor of 1.75 if the differential misclassification and unmea-
sured confounding were of the strengths we proposed. Since 
we are dealing with a possible protective factor, we multiply 
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the observed estimate of 0.51 and its confidence interval 
(95% CI 0.30, 0.89) by the bound (or equivalently divide the 
reverse-coded estimate of 1.96 by the bound), resulting in a 
bias-adjusted estimate and confidence interval of 0.89 (95% 
CI 0.52, 1.56). Unlike the Jurek et al sensitivity analysis,34 
which found that results were largely unchanged by exposure 
misclassification, we have focused specifically on a situation 
in which misclassification is differential by outcome, and have 
additionally taken both measured and unmeasured confound-
ing into account. Doing so indicates that the results may be 
sensitive to misclassification and uncontrolled confounding, 
as can be seen if the chosen parameter values are thought to 
be reasonable.

INFERENCE IN THE SELECTED POPULATION
Results 1 and 2 are derived with respect to the true causal 

effect in the total population, despite possible selection bias. In 
other situations, we may only be interested in the existence and 
magnitude of a causal effect in the selected population. In this 

case, our estimand of interest is RRtrue
AY S

Y S c

Y S c|

Pr |

Pr |=1
1

0

=
= 1,

= 1,

( )
( ) .  

If only selection bias is present, one can derive a bound 
under the assumption that Y A S c Ua s� | = 1, , .24 In the pres-
ent context, we additionally accommodate unmeasured 
confounding and measurement error. Consider unmea-
sured confounding by Uc  such that it is only the case that 
Y A S c U Ua s c� | = 1, , , . Therefore, we must consider the 
vector of factors causing selection bias and unmeasured 
confounding U U Usc s c= ,( ) . Define the sensitivity param-

eters RRUscY a
u sc

u sc

Y A a c U u

Y A a c U u
=

= 1 = , , =

= 1 = , , =
max

max Pr |

min Pr |

( )
( )  and  

RR AUsc
u

sc

sc

U u A c

U u A c
=

= = 1,

= = 0,
max

Pr |

Pr |

( )
( ) . Then under outcome 

misclassification, we have the following bound.

Result 3:

If Y A S c U Ua c s� | = 1, , ,
then:

RR RR BF BFobs true
AY AY S m sc* =1/ | ≤ ×

where BFm  is defined as in Result 1, and 

BF RR RRsc UscY AUsc
g= ,( ) . These latter parameters now 

refer to the maximum risk ratio for the outcome among the 
selected comparing any two levels of any of Us  and Uc, and 
the maximum ratio for any joint level of Us  and Uc  compar-
ing exposed to unexposed, among the selected. This bound 
holds under exposure misclassification with a rare outcome in 
the selected population as well, with BF OR′m A Y y S

= * , =1|
.

This result is summarized in the third row of Table 1.

SOFTWARE
The R package EValue36 allows for easy calculation of 

the multiple-bias bounds for various combinations of biases 
and assumptions, including all those presented in Table  1, 
as well as the possible simplifications to the selection bias 
bound, as in the first example. The function multi_bias() cre-
ates a set of biases according to the user’s specifications. The 
user can then input this object along with a proposed set of 
parameter values to the multi_bound() function to calculate 
a bound.

For example, the biases in the HIV example can be set with 
HIV_biases <- multi_bias(confounding(), selection(“general”, 
“increased risk”)). The command to calculate the bound 
is then multi_bound(biases = HIV_biases, RRAUc = 2.3, 
RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2). Similarly, for 
the vitamins-leukemia example, the biases are set with leuk_
biases <- multi_bias(confounding(), misclassification(“ex
posure”, rare_outcome = TRUE, rare_exposure = FALSE))  
and the bound command is multi_bound(biases = leuk_biases, 
RRAUc = 2, RRUcY = 1.22, ORYAa = 1.59).

These functions can be used to prepare a table or figure 
of bounded bias-adjusted estimates across a range of proposed 
parameter values. For example, Figure 2 shows the upper 
bound for the estimate of the protective effect of multivitamin 
use on leukemia across various values for RRUcY  and RR AUc

 

(in the columns and rows), and for two values of the misclas-

sification ratio OR
A Y y* |

 above and below the diagonal. We can 

use this table to describe multiple scenarios under which it 

would be possible for the true effect to be null. We can also see 
that even if, for example, the prevalence of the unmeasured 
confounder, or set of confounders, differs greatly between con-
sumers and nonconsumers of multivitamins (e.g., RR AUc

= 3
), a relatively small association between the unmeasured con-
founder and leukemia (e.g., RRUcY = 1.25 ) and between vita-

min use and misclassifcation (e.g., OR
A Y y* = 1.25

|
) would at 

most lead to a bias-adjusted estimate of 0.74.
More examples are available in the eAppendix; http://

links.lww.com/EDE/B824, and the package documentation is 
available online.

DISCUSSION
We have described an approach to sensitivity analy-

sis that we hope can help bridge the gap between complex 
methods that require specifying many parameters and making 
restrictive assumptions, and simpler methods that allow for 
assessment of only one type of bias at a time. The multiple-
bias bound can be used to simultaneously consider the possi-
ble effects of biases that are of different strengths. Researchers 
can propose values for the parameters based on background 
knowledge, validation studies, or simply hypothetical situ-
ations, and assess the minimum possible true risk ratio that 
would be compatible if the observed value were affected by 

http://links.lww.com/EDE/B824
http://links.lww.com/EDE/B824
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biases of that magnitude. When planning for future research, 
the bound can be used to compare the effects of biases within 
a given situation and prioritize more extensive confounder 
assessment, a more valid sampling or inclusion scheme, and 
better measurement techniques if resource constraints or data 
collection options forced one to choose among them. It may 
also show that certain improvements to study design are futile; 
if the amount of an unavoidable bias greatly attenuates the 
anticipated risk ratio estimate, investing resources into reduc-
ing another type of bias may not be worth it.37,38

There are a number of caveats and limitations to this 
approach. Although the calculations involved in our approach 
are simple, the entire process of assessing bias should not be. 
Importantly, it should be specific to the study design, the avail-
able data, and the research question; values for the sensitiv-
ity parameters are meaningless without a frame of reference. 

Indeed, critiques of the E value for unmeasured confounding 
have emphasized the importance of clearly specifying the 
confounder, or set of confounders, that have not been mea-
sured.39–41 The same should be true for factors potentially 
causing selection bias or the reason behind possible differ-
ential misclassification. Unmeasured confounders could be 
anything from a single missing risk factor to the “ultimate 
covariate,”42 the variable encoding an individual’s causal 
type. Misclassification may be negligible or close to nondif-
ferential, or as bad as chance in one or another group; it is up 
to researchers and readers to assess the plausibility of these 
situations with respect to a given study and what was condi-
tioned on in the analysis and then assess how much bias they 
would create. Like any tool, the multiple-bias bound can be 
misused; we encourage researchers to not be careless, owing 
to its apparent simplicity, but rather to be thoughtful in its use.

RRAUc

RRUcY 1.25 1.5 1.75 2 2.25 2.5 2.75 3

1.25

0.66

0.80
0.82 0.84 0.85 0.86 0.87 0.88 0.88

1.5 0.68

0.72

0.86
0.89 0.92 0.94 0.96 0.97 0.98

1.75 0.70 0.74

0.78

0.94
0.97 1.00 1.03 1.05 1.07

2 0.71 0.76 0.81

0.85

1.02
1.06 1.09 1.12 1.15

2.25 0.72 0.78 0.84 0.88

0.92

1.11
1.15 1.18 1.22

2.5 0.72 0.80 0.86 0.91 0.96

1.00

1.20
1.24 1.27

2.75 0.73 0.81 0.88 0.94 0.99 1.03

1.07

1.29
1.33

3 0.74 0.82 0.89 0.96 1.01 1.06 1.11

1.15

1.38

1

FIGURE  2. Corrected estimates for the effect of multivitamin use in pregnancy on childhood 
leukemia, taking into account unmeasured confounding and recall bias. The original estimate 
was 0.51. Corrected estimates are arranged in rows and columns by the parameters defin-
ing the unmeasured confounding, RRAUc and RRUcY. The two parameters are interchangeable 
with respect to the bound, so a table of estimates corrected only for unmeasured confound-
ing would be symmetric. However, the estimates in the upper and lower triangles have been 
corrected by misclassification parameters of different magnitudes. Below the diagonal, the 
misclassification ratio is assumed to be 1.25; above the diagonal, it is assumed to be 1.5.
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Additionally, in avoiding certain assumptions, we have 
necessarily invoked others. In particular, the bounds we pro-
pose describe a “worst-case scenario” for the bias; in almost 
all settings, the actual bias will be smaller than the bound. For 
example, for the actual bias to obtain the bound assumes that 
the unmeasured confounder has the distribution that maxi-
mizes confounding, given the two parameters defining it.43 
The same is true of selection bias and misclassification; for 
example, the general selection bias bound implies that out-
comes and exposures in the nonselected group are distributed 
to result in the most possible bias. This is of course neces-
sary for a bound to be a bound, but many realistic conditions 
would not result in as much bias, and the bound should be 
interpreted as the bias that could result from parameters of 
a given magnitude not that necessarily would result. The 
few assumptions that are required for the bound to hold may 
not be reasonable in all settings; for example, the general 
selection bias assumption is unlikely to hold in case-control 
studies. In addition, the interpretation of the bias-adjusted 
confidence interval pertains to the application of the adjust-
ment to repeated samples with the same sets of biases; if 
the biases were truly resolved in the design or analysis, the 
bounds would differ.

Finally, although we have suggested two possible order-
ings for factoring the bias, others that take into account, 
for example, misclassification that is also differential by an 
unmeasured confounder, are possible. We have presented 
results for risk ratios, which can in many cases be extended to 
odds ratios. However, our bound for exposure misclassifica-
tion relies on a rare outcome assumption that limits its use and 
results in an approximate bound. Because we are never sure 
of the true values of the parameters that make up the bound, 
and the bound represents a worst-case scenario not likely to 
hold anyway, this approximation is not likely to meaningfully 
affect interpretation. Further work could be done to extend 
this approach to risk differences or mean differences, which 
may be especially challenging because the bounds are more 
frequently noninformative.44 Other approaches exist to quan-
tify as simply as possible unmeasured confounding in linear 
or probit models,45–48 but to our knowledge, they have not yet 
been extended to multiple biases.

There is no single solution to the problem of bias in 
epidemiologic research. Some biases can be corrected at the 
design phase, others in the main analysis, but the assessment 
of what bias may remain should be a regular component of 
any study that attempts to quantify causal effects. The mul-
tiple-bias bound can make it simpler to do so, and we hope 
to encourage thoughtful consideration of multiple sources of 
bias in epidemiologic research.
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