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Results from randomized controlled trials (RCTs) help determine 
vaccination strategies and related public health policies. However, 
defining and identifying estimands that can guide policies in infec-
tious disease settings is difficult, even in an RCT. The effects of 
vaccination critically depend on characteristics of the population 
of interest, such as the prevalence of infection, the number of vac-
cinated, and social behaviors. To mitigate the dependence on such 
characteristics, estimands, and study designs, that require condition-
ing or intervening on exposure to the infectious agent have been 
advocated. But a fundamental problem for both RCTs and observa-
tional studies is that exposure status is often unavailable or difficult to 
measure, which has made it impossible to apply existing methodol-
ogy to study vaccine effects that account for exposure status. In this 
study, we present new results on this type of vaccine effects. Under 
plausible conditions, we show that point identification of certain rela-
tive effects is possible even when the exposure status is unknown. 
Furthermore, we derive sharp bounds on the corresponding absolute 
effects. We apply these results to estimate the effects of the ChAdOx1 
nCoV-19 vaccine on SARS-CoV-2 disease (COVID-19) conditional 
on postvaccine exposure to the virus, using data from a large RCT.
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Vaccines are one of the most important inventions in 
modern medicine.1 Justification for real-life vaccination 

strategies relies heavily on results from large-scale vaccine 
randomized controlled trials (RCTs). However, the nature of 
communicable diseases means that defining and evaluating 
vaccine effects requires consideration of population charac-
teristics such as the prevalence of current and prior infection, 
mixing patterns, and concurrent public health measures.

Policy-relevant estimands for vaccine trials have been 
discussed extensively (see Halloran et al.2 for an overview), in 
particular in the context of the SARS-CoV-2 disease (COVID-
19) pandemic.3–9 However, as of yet, methods to study vaccine 
effects conditional on, or under interventions on, exposure to 
the infectious agent are rarely used. Here and henceforth, we 
use exposure to mean exposure to the disease agent, such as a 
virus, which is distinct from the treatment, such as a vaccine. 
A key problem is that exposure status is often difficult, or even 
impossible, to measure in practice.2,10 For example, Halloran 
and Struchiner11 write that measuring susceptibility to infec-
tion “might not be easy in practice and might indeed require 
considerable assumptions regarding who is infectious and 
when, how infectious the persons are, and who is exposing 
whom.” Challenge trials, in which participants are intention-
ally exposed, are one option for controlling exposure status 
but involve serious ethical issues.12–14

This article specifically targets effects that account for 
exposure status, even when it is unmeasured. We provide 
results on the interpretation and identification of causal effects 
of vaccines from RCTs and observational studies. The results 
include identification conditions and formulas for the causal 
effect of a vaccine on clinical outcomes, conditional on an 
unmeasured exposure to the infectious agent. Specifically, we 
show that, under a plausible no effect on exposure assumption, 
the relative effect—though not the absolute effect—of the vac-
cine can be point-identified in an RCT. Furthermore, under 
the same assumption, we derive sharp bounds for the absolute 
effect. We clarify how these effects are related to existing esti-
mands and notions of biological effects, and we give identifi-
cation results on per-exposure effects,10,15 a type of controlled 
direct effect, even when the exposure is unmeasured, as is 
often the case in practice.

The article is organized as follows. Section Data 
Structure presents the data structure and the notation. Section 
Causal Parameters provides definitions and interpretation of 
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causal estimands. Section Identification contains results on 
the identification of causal estimands, including point iden-
tification results for the relative causal effect conditional on 
exposure, and partial identification results for the absolute 
causal effect conditional on exposure. Section External Data 
and Sensitivity Analysis presents results for point identifica-
tion of absolute causal effects conditional on exposure when 
external data on exposure risk are available, and suggests 
a sensitivity analysis when external data are unavailable. 
Section CECE in Time-to-event Settings extends the results 
to time-to-event outcomes, in a setting in which individuals 
can be censored due to loss to follow-up. Section Estimation 
and Implementation describes how our new parameters can 
be estimated using existing estimators, even when the out-
come is unmeasured. Section Example: Effects of COVID-
19 Vaccination implements the new results in a study of the 
ChAdOx1 nCoV-19 (Oxford) vaccine against COVID-19.

DATA STRUCTURE
Suppose that we have data from a randomized experi-

ment with n individuals who are assigned a binary treatment 
A ∈ {0, 1} at baseline, where A = 1 indicates receiving vac-
cine and A = 0 indicates placebo or other control. As is com-
mon in vaccine trial settings,16,17 we consider inference in a 
much larger population from which the trial participants are 
drawn, so that interactions among patients in the trial are neg-
ligible; thus, we suppose the individuals are iid and omit the i 
subscript. Let L be a vector of baseline covariates. To simplify 
the presentation, we suppose L is discrete, but the results gen-
eralize to continuous L.

Let E ∈ {0, 1} be an indicator of whether an individual 
is exposed to the infectious agent at least once, for example, 
being in close contact with an actively contagious individual, 
which may be unobserved in the study. Although we will focus 
on settings where the exposure E  occurs after treatment A 
is assigned, that is, after baseline, our results also allow the 
(unobserved) exposure E  to be temporally ordered, and thus 
occur, before treatment A. We first consider Y ∈ R≥0 to be 
the outcome of interest, for example, disease severity or hos-
pitalization, measured at a given time after randomization, 
where we define Y = 0 when an individual does not have 
the outcome. In Section CECE in Time-to-event Settings 
(CECE=causal effect conditional on exposure), we extend the 
results to censored time-to-event outcomes.

We use superscripts to denote counterfactuals.18,19 For 
example, Ya=1 and Ya=0 are the outcomes of interest when the 
treatment is, possibly contrary to fact, fixed to active vaccine 
(a = 1) or control (a = 0).

CAUSAL PARAMETERS

The Average Treatment Effect
To motivate the new contributions in this article, we first 

review the conventional average treatment effect (ATE) of A 
on the outcome Y ,

	 E(Ya=1) vs. E(Ya=0),� (1)
which compares the average outcome in the trial population 
had everyone been treated (a = 1) versus not treated (a = 0).  
This contrast can be identified without additional assump-
tions when the trial is perfectly executed, that is, under per-
fect randomization and no losses to follow-up. However, 
as with any trial, the magnitude of (1) depends on the spe-
cific setting in which the RCT was conducted; in a vaccine 
trial, crucial characteristics include the number of cur-
rently infected in the population, the number of previously 
infected, the mixing pattern, and additional public health 
measures that may be simultaneously implemented. To gen-
eralize the results from the RCT to a policy-relevant setting, 
we must account for these characteristics, which is far from 
straightforward.

Conditional Counterfactual Contrasts Are Not 
Necessarily Causal Effects

To mitigate some of the concerns that are raised about 
the ATE in vaccine trials, we could attempt to adjust for expo-
sure to the infectious agent.2,11 However, defining causal 
effects conditional on exposure status is not straightforward 
because exposure status is a post-treatment variable. In partic-
ular, a naive contrast of counterfactual outcomes conditional 
on exposure status,

	 E(Ya=1 | Ea=1 = 1) vs. E(Ya=0 | Ea=0 = 1),� (2)

is not a causal effect when the treatment affects the post-
treatment event; it compares counterfactual outcomes in dif-
ferent subpopulations of individuals. This is illustrated by the 
path A → E in the causal directed acyclic graph (DAG) in 
Figure 1A, which leads to an indirect effect of vaccination on 
the outcome Y  through the path A → E → Y . This indirect 
effect is plausible if participants know their treatment status; 
for example, one may expect that vaccinated individuals show 
a reduction in protective behaviours, which increases the risk 
of being exposed.

The Principal Stratum Effect and the Causal 
Effect Conditional on Exposure

A principal stratum effect (PSE)18,20 compares 
counterfactual outcomes among individuals with the 
same counterfactual exposure status. We can def ine a 
particular PSE among those individuals who would be 
exposed to the infectious agent, at least once, regardless 
of treatment assignment,

	 E(Ya=1 | Ea=0 = Ea=1 = 1) vs. E(Ya=0 | Ea=0 = Ea=1 = 1).� (3)

Unlike (2), the PSE (3) is a contrast of counterfactual out-
comes in the same (sub)population of individuals, and it is 
therefore a causal effect. However, the conditioning set in 
(3) is defined by exposures in the same individual under two 
different treatments and, without further assumptions, it is 
impossible to observe the individuals in this subpopulation,18 
even when E  is measured. Thus, the PSE is defined in an 
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unknown subpopulation that is unobservable even in princi-
ple, and the practical relevance of the PSE has been seriously 
questioned.21–24

As an alternative to the PSE, consider a contrast of 
counterfactual outcomes conditional on exposure status in the 
observed data,

	 E(Ya=1 | E = 1) vs. E(Ya=0 | E = 1).	 (4)

Like (3), the contrast in (4) is a causal effect as it com-
pares the same subpopulation of individuals under different 
treatment. Unlike (3), the conditioning set in (4) is observable 
when E  is measured. Without additional assumptions, how-
ever, the interpretation of (4) is not straightforward, because 
an individual’s exposure status in the observed world (E) is 
not guaranteed to be equal to the exposure status under an 
intervention that fixes the treatment to be a (Ea). Thus, in gen-
eral we cannot interpret (4) as a direct effect of treatment A 
on the outcome Y  outside of the treatment effects on exposure 
status.

But there is at least one setting in which differences 
in exposure status would not be expected between treatment 
groups: a blinded RCT, which is the context of many vaccine 
efficacy studies. The following mechanistic assumption for-
malizes the notion that receiving the vaccine does not exert 
effects on exposure status E .

Assumption (No effect on exposure).

	 Ea=0 = Ea=1.	 (5)
Assumption (5) guarantees that exposure to the infec-
tious agent is the same, regardless of the treatment that was 
assigned, and, assuming that the intervention on A is well-
defined, allows us to write E = Ea=0 = Ea=1.

This assumption can also hold outside of a blinded 
RCT. In particular, exposures that are outside of the indi-
vidual’s control can satisfy Assumption (5). Such exposures 
could be consequences of natural or human disasters, such 
as a flooding after an intense rainfall or radiation from an 
atomic bombing.

The DAG in Figure 1B describes the causal structure of 
a blinded RCT, in which this assumption would be expected 
to be met, as there is no path A → E and therefore no indi-
rect effect of vaccination on the outcome through the path 
A → E → Y .

Under assumption (5), the contrasts (2)–(4) are equal, 
that is,

E(Ya=1 | E = 1) vs. E(Ya=0 | E = 1)

= E(Ya=1 | Ea=1 = 1) vs. E(Ya=0 | Ea=0 = 1)

= E(Ya=1 | Ea=0 = Ea=1 = 1) vs. E(Ya=0 | Ea=0 = Ea=1 = 1).

Halloran and Struchiner11 also advocated contrasts of (coun-
terfactual) outcomes in exposed individuals, under the 

Figure 1.  The DAG in (A) describes a study where A is randomly assigned. The DAG in (B) further encodes the no effect on expo-
sure assumption, which is supposed to hold in a blinded RCT. The graph in (C) is a SWIG where we have fixed the treatment to a
. This SWIG can be used to study identifiability conditions for the CECE, which is identified even if L is unmeasured. The SWIG in 
(D) describes interventions on both A and E  (e is fixed to 1), which allows us to study identifiability conditions for the CDE. Unlike 
the CECE, the CDE would require measurement of L.



Epidemiology  •  Volume 34, Number 2, March 2023	 Identification of Vaccine Effects

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.	 www.epidem.com  |  219

assumption that “people did not change their behavior after 
randomization”11 (p. 147). Condition (5) formalizes when such 
contrasts are unambiguous causal effects, that is, contrast of 
outcomes in the same (sub)population of individuals.

Because we focus on blinded RCTs in this study, 
we will use assumption (5) extensively, and under (5), we 
will denote the contrasts (3)–(4) collectively as the causal 
effect conditional on exposure (CECE), which is also 
equal to (2).

The CECE could mitigate some of the concerns that are 
raised about the generalizability of the ATE (1), because the 
CECE is confined to those individuals who are exposed to the 
infectious agent in the observed data, regardless of treatment 
assignment. Thus, assumption (5) ensures that the CECE has 
a mechanistic interpretation as an average causal effect given 
exposure to the infectious agent. The CECE is also of imme-
diate interest for individuals who, based on their own subject-
matter knowledge, believe, or possibly know, that they will be, 
or already are, exposed.

However, the CECE is defined among those who 
would be exposed in a given study, and the subset who is 
exposed is context-dependent. To understand the CECE, 
it is helpful to draw an analogy to ring vaccination trials, 
in which individuals are recruited only if they have been 
exposed to an index case, and are subsequently randomly 
assigned to A. Suppose we indicate exposure to an index 
case as E . Then, the estimand (4) corresponds to the usual 
estimand in ring vaccination trials, which is an effect con-
ditional on being exposed. Like the CECE, the target popu-
lation of a ring vaccination trial is context-dependent, as 
being a contact of an index case is required for inclusion, 
and characteristics of those individuals depend on the set-
ting. In a ring vaccination trial, however, exposure is pre-
treatment and exposure status is known, features not shared 
with our setting.

The Controlled Direct Effect
A special case of a controlled direct effect (CDE),25 

also called a per-exposure effect or a challenge effect,10,11 is 
defined with respect to an intervention on the treatment A and 
the exposure E ,

	 E(Ya=1,e=1) vs. E(Ya=0,e=1).	 (6)

This CDE corresponds to the effect that is identified 
by a challenge trial26; that is, a study where the participants 
are subject to an intervention where they are guaranteed to be 
physically exposed to the infectious agent. Outside of RCTs, 
household studies are sometimes used to infer such effects, 
based on contrasts of household secondary attack rates.11

Unlike the ATE (1), the CDE is defined in a controlled 
setting, in which all individuals are exposed to the infectious 
agent. Thus, this effect is insensitive to the risk of exposure in 
the observed population.

Finally, all the estimands considered so far can be defined 
conditional on any baseline covariate L. The distinction 

between estimands conditional on L and marginal estimands 
will be of interest when we study identification.

The Notion of a “Biological” Effect
Both the CECE and CDE quantify treatment effects in 

individual who are guaranteed to be exposed to the disease 
agent. In that sense, both effects seem to be captured by the 
notion of “biological” effects. However, the fact that the CECE 
and CDE are distinct estimands illustrates that the term “bio-
logical” effect, without further clarification, is ambiguous.

IDENTIFICATION
To motivate the identification results in this work, we first 

review three standard identifiability conditions for the ATE.
Assumption (Treatment exchangeability).

	 	 (7)

Treatment exchangeability, for example, holds in the Single 
World Intervention Graph (SWIG)19 in Figure 1C, even if L 
is unmeasured.
Assumption (Positivity).

	 P(A = a) > 0 ∀a ∈ {0, 1}.	 (8)

Assumption (Consistency).

	 IfA = a, thenE = Ea and Y = Ya ∀a ∈ {0, 1}.	 (9)

Conditions (7)–(9) hold by design in an RCT 
where treatment is unconditionally randomly assigned. 
These three conditions allow us to identify the ATE (1) as 
E(Y | A = 1) vs. E(Y | A = 0), regardless of whether expo-
sure status E  is measured.

However, our focus is on estimand (4) (and (6) in eAp-
pendix D, http://links.lww.com/EDE/B994), which is defined 
with respect to counterfactual statuses of the exposure E , so 
which require additional assumptions.

Identification of the CECE
Under the no effect on exposure assumption (5) and 

conditions (7)–(9), it is straightforward to express the CECE 
as a function of factual variables,

E(Ya=1 | E = 1) vs. E(Ya=0 | E = 1)
= E(Y | E = 1,A = 1) vs. E(Y | E = 1,A = 0),

but the CECE, as defined as an arbitrary contrast (“vs.”), is not point 
identified in our data because E(Y | E = 1,A = a) is not estima-
ble when E is unmeasured. For example, the absolute CECE,

E(Ya=1 | E = 1)− E(Ya=0 | E = 1) =

E(Y | E = 1,A = 1)− E(Y | E = 1,A = 0),

is not possible to estimate from the observed data.
To identify the CECE, we therefore introduce an addi-

tional assumption, which relates the unmeasured E  to Y .
Assumption (Exposure necessity).

	 Ea = 0 =⇒ Ya = 0, ∀a ∈ {0, 1}.	 (10)

The exposure necessity assumption states that only individu-
als who were exposed to the infectious agent can experience 
the outcome. Thus, the exposure is a necessary condition for 

http://links.lww.com/EDE/B994
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experiencing the outcome. For example, contact with some 
amount of live virus is necessary to develop severe disease. 
Many exposures and outcomes of interest meet this criterion, 
though sometimes researchers may be interested in other 
exposures that do not necessarily satisfy this criterion, for 
example, sharing a home or classroom with an infected indi-
vidual. However, such an exposure definition might be revised 
to being in the same room with an infected individual for at 
least 1 minute, though even that might not be strictly neces-
sary. In practice, it is important that the investigator has articu-
lated a well-defined exposure, but it is possible that different 
investigators use different definitions.

Our first proposition shows that the relative CECE is 
identified under the conditions we have introduced so far, 
which are expected to hold in a blinded RCT.
Proposition 1 (Relative CECE). Under the no effect on expo-
sure assumption (5), standard identifiability conditions (7)–(9) 
and exposure necessity (10), the relative CECE is equal to

E(Ya=1 | E = 1)
E(Ya=0 | E = 1)

=
E(Y | A = 1)
E(Y | A = 0)

,

given that E(Y | A = 0) > 0.
The proof is found in eAppendix A, http://links.lww.

com/EDE/B994. From our considerations in Section The 
Principal Stratum Effect and the Causal Effect Conditional 
on Exposure and our derivations in Section Identification of 
the CECE, it follows that Proposition 1 also gives an iden-
tification result for the relative principal stratum effect, that 
is, E(Y

a=1|Ea=0=Ea=1=1)
E(Ya=0|Ea=0=Ea=1=1). Interestingly, Proposition 1 shows that 

the relative CECE is equal to the conventional ATE on the 
relative risk scale, which is routinely reported in RCTs. Thus, 
we specify the assumptions that allow for interpretation of 
this estimand as a measure of vaccine efficacy conditional on 
exposure to infection.2

The fact that the relative CECE is identified by the same 
formula as the relative ATE is related to the known result in 
epidemiology that diagnostic tests that have perfect specificity 
will give unbiased estimates of risk ratios, even if these tests 
do misclassify disease cases. We discuss this in eAppendix C, 
http://links.lww.com/EDE/B994.

Although the absolute CECE is not point identi-
fied, our next proposition gives partial identification of the 
absolute CECE for a binary outcome Y ∈ [0, 1] in terms of 
sharp bounds. To simplify the presentation of the subse-
quent results we suppose, without loss of generality, that 
E(Y | A = 0) ≥ E(Y | A = 1).
Proposition 2 (Absolute CECE). Under the no effect on expo-
sure assumption (5) and conditions (7)–(10), the absolute 
CECE on an outcome Y ∈ [0, 1] is partially identified by the 
sharp bounds
E(Y | A = 0)− E(Y | A = 1) ≤ E(Ya=0 | E = 1)− E(Ya=1 | E = 1) ≤ 1− E(Y | A = 1)

E(Y | A = 0)
,

when E(Y | A = 0) ≥ E(Y | A = 1).
The proof is given in eAppendix A, http://links.lww.

com/EDE/B994.

Remark on Proposition 2. The lower bound on the absolute 
CECE is equal to the absolute ATE. Thus, Proposition 2 gives 
us another interpretation of a standard risk difference—as a 
lower bound on the absolute CECE. Furthermore, this lower 
bound is equal to the absolute CECE if everybody is exposed.

The upper bound is 1 minus the relative ATE, which is 
a quantity that is often reported as the vaccine efficacy in ran-
domized controlled trials,2 for example, during the COVID-19 
pandemic.27 The absolute CECE is equal to this bound if an 
unvaccinated individual (A = 0) will experience the outcome 
(Y = 1) if and only if she is exposed (E = 1).

It follows from Proposition 2 that the larger 
E(Y | A = 0), the more informative are the bounds. In par-
ticular, the lower bound is equal to the upper bound when 
E(Y | A = 0) = 1.

Zhao et al.28 studied another interesting setting where rela-
tive—but not absolute—risks could be point identified. Their 
causal question, which concerned racial discrimination in polic-
ing, was studied in a setting where the treatment, equivalent to our 
A, was unmeasured, but the mediator, equivalent to our E, was 
measured. Their estimand of interest was the conventional ATE.

EXTERNAL DATA AND SENSITIVITY ANALYSIS
Consider a binary outcome Y ∈ {0, 1}, for example, 

an indicator of symptomatic disease. Suppose that the inves-
tigator has external knowledge about the risk of experienc-
ing the outcome given exposure among the unvaccinated, that 
is, P(Y = 1|E = 1,A = 0). Alternatively, suppose that the 
investigator has external knowledge about the risk of being 
exposed among the unvaccinated, that is, P(E = 1|A = 0). 
Knowledge of either of these probabilities could have been 
collected among trial eligible individuals who did not partici-
pate in the randomized experiment, or among a subset of the 
trial participants.

Our next proposition shows that knowledge of either 

P(Y = 1|E = 1,A = 0) or P(E = 1|A = 0) allows point 
identification of the absolute CECE, when we also assume the 
same identification conditions as in Proposition 2.
Proposition 3 (Point identification of the absolute CECE). 
Under the no effect on exposure assumption (5) and condi-
tions (7)–(10),

E(Ya=0 | E = 1)− E(Ya=1 | E = 1)

	
= E(Y | E = 1,A = 0)

Å
1− E(Y | A = 1)

E(Y | A = 0)

ã
	 (11)

	
=

E(Y | A = 0)
P(E = 1 | A = 0)

− E(Y | A = 1)
P(E = 1 | A = 1).

	 (12)

The proof of Proposition 3 is given in eAppendix E, 
http://links.lww.com/EDE/B994. Besides giving point identi-
fication results in settings with knowledge from external data, 
Proposition 3 motivates sensitivity analyses for the magnitude 
of the absolute CECE using sensitivity parameters that are 
justified by subject-matter reasoning; that is, the investiga-
tor can evaluate (11) and (12) under different values of the 

http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
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marginal sensitivity parameters P(Y = 1|E = 1,A = 0) and 
P(E = 1|A = 0), respectively.

CECE IN TIME-TO-EVENT SETTINGS
In both RCTs and observational studies, it is common 

to evaluate vaccine effects on time-to-event outcomes. Our 
results generalize to settings where the exposure status and the 
outcome of interest are both time-to-event variables, which 
possibly are censored due to losses to follow-up.

Suppose that Yk  and Ek  are time-to-event variables 
indicating whether an individual has experienced the event 
by time k, that is, Yk = 1, and has been exposed by time k, 
respectively. That is, Ek = 1 means exposure has occurred 
at least once. Let Ck  indicate loss to follow-up (censoring) 
by time k > 0. To align with the established causal inference 
literature,18,19,29 suppose that we are interested in outcomes 
in discrete time intervals k = 0, . . .K , and define the tem-
poral (and topological) order (Ck ,Ek , Yk) in each interval 
k > 0. This setting will converge to a continuous time set-
ting when we let the time intervals become small. We con-
tinue to use superscripts to denote counterfactuals, and we 
formally consider a counterfactual estimand under interven-
tions on the baseline treatment A and the censoring variable 
Ck .30,31 For example, Ya,c=0

k  is the counterfactual outcome 
of interest by time k when treatment is assigned to a and 
there is no loss to follow-up. The Single World Intervention 
Graph (SWIG) in Figure 2 describes a causal structure that 
is coherent with our time-to-event setting. In eAppendix B, 
http://links.lww.com/EDE/B994, we give more details on 
the time-to-event notation, and we state generalizations of 
the exchangeability, positivity, consistency, exposure neces-
sity and the no effect on exposure conditions to settings 
with time-to-event outcomes, see conditions (S3)–(S9). 
Under these conditions, we can identify the relative CECE 
as a ratio of cumulative incidences, as described in the next 
proposition.

Proposition 4 (Relative and absolute CECE for time 
to event outcomes). Under exchangeability, positivity, con-
sistency, exposure necessity and the no effect on exposure 
assumption for time-to-event outcomes, formally stated as 
conditions (S3)–(S9) in eAppendix B, http://links.lww.com/
EDE/B994, the relative CECE at time k, 0 ≤ k ≤ K , is identi-
fied by the ratio of cumulative incidences,

E(Ya=1,c=0
k | Ea=1,c=0

k = 1)

E(Ya=0,c=0
k | Ea=0,c=0

k = 1)
=

µk(1)
µk(0)

,

where

µk(a) =
k∑

s=1

hs(a)
s−1∏
j=0

[1− hj(a)]

and

hk(a) =
E[Yk(1− Yk−1)(1− Ck) | A = a]

E[(1− Yk−1)(1− Ck) | A = a]
.

Under the same conditions, the absolute CECE is partially 
identified by the sharp bounds

µk(0)− µk(1) ≤ E(Ya=0,c=0
k | Ea=0,c=0

k = 1)−

E(Ya=1,c=0
k | Ea=1,c=0

k = 1) ≤ 1− µk(1)
µk(0)

,

when µk(0) ≥ µk(1).
See eAppendix B, http://links.lww.com/EDE/B994, for 

details and a proof. Thus, like the point exposure and point 
outcome setting, we do not need to measure common causes 
of Ej  and Yk , j, k ∈ {0, . . . ,K}, to point identify the relative 
CECE and bound the absolute CECE in time-to-event settings.

We have restricted all our discussion to results on risks, 
not rates such as hazards. Despite the fact that hazards are 
sometimes reported as “efficacy parameters” in infectious 
disease settings, there are well-known limitations of consid-
ering causal estimands on the hazard scale18,32–34 because of 
the conditioning on a post-treatment event—here outcomes at 
earlier times—that is affected by treatment.

Figure 2.  The SWIG shows a time-to-event setting where the CECE is identified, even if L0 and L1 are unmeasured.

http://links.lww.com/EDE/B994
http://links.lww.com/EDE/B994
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Excess and Etiologic Fractions
Following Greenland and Robins,35 the excess (pre-

vented) fraction quantifies the excess of outcomes under treat-
ment versus control. When the assumptions of Proposition 4 
hold, the excess fraction among the exposed is

	
E(Ya=0,c=0

k | Ea=0,c=0
k = 1)− E(Ya=1,c=0

k | Ea=1,c=0
k = 1)

E(Ya=0,c=0
k | Ea=0,c=0

k = 1)
= 1− µk(1)

µk(0)
,
	

(13)

which quantifies the increase in caseload under no treat-
ment.35,36 In particular, the excess fraction conditional on 
exposure is equal to the unconditional excess fraction. 
Furthermore, the right hand side of (13) is often what is 
reported as the vaccine efficacy in clinical studies.2

The excess fraction should not be confused with the 
etiologic fraction, which is the fraction caused by treatment. 
For example, suppose we consider outcomes at time k, and 
there are no losses to follow-up. Consider an individual for 
whom a vaccine prolonged the time to the outcome of severe 
infection from time j to time l, but (s)he would nevertheless 
have a severe infection by time k when taking the vaccine, 
where j < l < k . Then, treatment A was a contributory cause 
of the outcome in this individual, and would thus count as an 
etiologic event in the etiologic fraction. On the other hand, the 
individual would not increase the excess caseload by time k, 
because (s)he experienced the outcome by time k regardless 
of treatment. The etiologic fraction requires much stronger 
conditions for identification, even in RCTs and even without 
conditioning on exposure.35,36

ESTIMATION AND IMPLEMENTATION
Because all our identifying formulas from Section 

Identification are expressed in terms of simple conditional 
means, we can use simple estimators with known proper-
ties. Let µ̂(a) and µ̂(a, l) be estimators of E(Y | A = a) and 
E(Y | A = a, L = l), respectively, for example, empirical 
means. We can estimate the relative CECE by

÷rCECE =
µ̂(1)
µ̂(0)

,

and similarly the upper bound on the absolute CECE by 
÷aCECEU = 1− ÷rCECE, where we can compute confidence 
intervals using standard estimators for risk ratios. Estimators 
of confidence intervals for risk ratios could be derived from 
Fieller’s theorem37 or the Delta method.38 The estimator of the 
lower bound on the absolute CECE is ÷aCECEL = µ̂(0)− µ̂(1),  
which is simply a difference in means estimator. The estima-
tor for the relative conditional CDE is defined analogously to 
÷rCECE, where we also include L in the conditioning set, that 
is, ’rCDE(l) = µ̂(1, l)/µ̂(0, l).

For the identifying formulas in Section CECE in Time-
to-event Settings, which are cumulative incidences, let µ̂k(a) 
and µ̂k(a, l) be estimators of µk(a) and µk(a, l), respectively. 
Then, we can follow standard procedures for calculating ratios 
of cumulative incidence functions with confidence intervals, 
see for example, 39 (Sections 2.3 and 2.4).

EXAMPLE: EFFECTS OF COVID-19 
VACCINATION

To study the effect of the ChAdOx1 nCoV-19 vaccine 
against COVID-19, Voysey et al.40 enrolled 23,848 partici-
pants in a blinded RCT done across the United Kingdom, 
Brazil, and South Africa. The participants were randomly 
assigned 1:1 to the ChAdOx1 nCoV-19 vaccine or control, 
which contained a meningococcal vaccine. The interim analy-
sis included 11,636 participants.40 The cumulative incidence 
of COVID-19 80 days since second dose was 0.9% (95% CI = 
0.5%, 1.3%) and 3.1% (95% CI = 2.4%, 3.8%) in the vaccine 
and placebo arms, respectively. Thus, an estimate of the rela-
tive CECE ≡ CECEk=80, defined on the cumulative incidence 
scale, is

÷rCECE =
µ̂(1)
µ̂(0)

= 0.30 (95% CI =0.15, 0.44),

which corresponds to the reported vaccine efficacy point esti-
mate of 1− 0.30 = 0.7040 (Table 2). Here and henceforth, we 
omit the k = 80 subscript to simplify the notation.

We can use the results from Section Identification of the 
CECE to derive bounds for the absolute CECE, specifically 
the sharp lower bound
÷aCECEL = 0.031− 0.009 = 0.022 (95% CI =0.011, 0.033),

and the sharp upper bound
÷aCECEU = 1− 0.30 = 0.70 (95% CI : 0.57− 0.85).

Although we obtained informative point estimates of 
the relative CECE, the bounds on the absolute CECE are 
wide. The fact that the bounds are wide is not surprising, 
because they crucially depend on the risk of exposure to the 
virus. As discussed in Section Identification of the CECE, 
the lower bound is reached under a setting where everybody 
is exposed to the virus, and the upper bound when the prob-
ability of the outcome among the exposed, unvaccinated 
individuals is 1. Depending on the definition of exposure, 
such settings may or may not be plausible. However, we can 
use a sensitivity analysis, as suggested in Section External 
Data and Sensitivity Analysis, to reason about the magnitude 
of the absolute CECE.

Sensitivity Analysis in the ChAdOx1 nCoV-19 
Vaccine Study

Determining sensitivity parameters to generate point 
estimates of the absolute CECE requires us to think concretely 
about the definition of exposure, or to consider a range of 
definitions of exposure. The ChAdOx1 nCoV-19 vaccine trial 
began enrollment in June 2020 and recruited a sample of 60%–
90% health-care workers, depending on the site. Suppose we 
define E  as coming into contact with an equivalent amount of 
SARS-CoV-2 virus particles that may be encountered while 
caring for a COVID patient wearing personal protective equip-
ment (PPE). However, because it is important that our defini-
tion of E  satisfies exposure necessity, we can more precisely 
define E  as a specific amount of virus particles such that the 
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exposure necessity condition holds. For example, this could 
be a particular amount of virus particles when wearing PPE, 
and a higher amount when not wearing PPE. To parameter-
ize P(E = 1|A = 0), we might propose that 60% of the trial 
participants were exposed to such an amount of virus particles 
at some point during the 80-days period. Given the observed 
data, this would imply that P(Y = 1|E = 1,A = 0) = 0.052;  
that is, E , here denoting a given amount of virus particles, 
was sufficient to cause symptomatic COVID-19 in just over 
5% of unvaccinated participants during 80 days of follow-up. 
In this setting, we would estimate ÷aCECE = 0.037 (Figure 3). 
Suppose now that we rather set the sensitivity parameter 
P(E = 1|A = 0) to 0.9 instead of 0.6. Then, ÷aCECE = 0.024,  
which is consistent with P(Y = 1|E = 1,A = 0) = 0.034.

So far we have reasoned about the sensitivity param-
eter P(E = 1|A = 0). However, we could also reason about 
P(Y = 1|E = 1,A = 0), perhaps using external data. For 
example, consider the choir practice in Washington state in 
March 2020, after which 52 out of 61 participants devel-
oped COVID-19, having been exposed to a high concentra-
tion of virus in an unmasked setting.41 Using this estimate of 
P(Y = 1|E = 1,A = 0) = 0.85, we find that ÷aCECE = 0.60,  
an estimate consistent with P(E = 1|A = 0) = 0.036. If 
exposure to such a high dose of SARS-CoV-2 is necessary 
for infection, the absolute CECE is much closer to its upper 
bound, and the risk of such an exposure in the trial setting is 
necessarily lower.

More broadly, the bounds illustrate an important 
point: the relative CECE is constant for any exposure when 
Assumptions (10) and (5) hold, but only weak conclusions can 
be made about the magnitude of the absolute CECE unless 
we both have a clear idea about the definition of the expo-
sure and have information about P(Y = 1|E = 1,A = 0) or 
P(E = 1|A = 0).

Estimating the CDE requires data on covariates L, such 
as comorbidities, smoking, work occupation, and age, to jus-
tify condition (S10), see eAppendix D, http://links.lww.com/
EDE/B994. Because this information is unavailable, we have 
not attempted to estimate the CDE.

DISCUSSION
In this study, we have distinguished various estimands 

for vaccine effects conditional on exposure to infection and 
clarified their identification assumptions. We have required 
that the exposure, for example, close contact with an infec-
tious individual, is necessary for the outcome of interest to 
occur, for example, symptomatic disease, as stated in our 
exposure necessity condition (10). An alternative approach 
would involve adapting the definition of exposure to some-
thing that is possible to measure. For example, one might 
define exposure as close contact with infected people who 
present overt disease. However, such definitions have explic-
itly been discouraged, precisely because they would lead to an 
underestimate of the exposure in settings where some infec-
tions are inapparent.2 In the case of the CECE, we have con-
sidered the exposure to be any event such that the exposure 
necessity condition holds.

When a necessary exposure is unmeasured, we have 
shown that relative effects can be point identified under plausi-
ble conditions, but absolute effects can only be bounded under 
the same conditions. Often the most commonly reported and 
publicized results are relative effects, as in major studies on 
different COVID-19 vaccines.40,42,43 Thus, the results pre-
sented in this work give valuable interpretations to the num-
bers that are computed.

However, often both relative and absolute effects are of 
interest. Absolute effects are usually studied in optimal regime 
settings,44–46 which reflects the common opinion that hetero-
geneous effects on the additive scale are most appropriate for 
evaluating public health interventions.47 Importantly, bounds 
on the additive effect can be used in formal decision theo-
retic approaches, even if these bounds are wide or cover null 
effects.48,49 Furthermore, if the investigator is willing to invoke 
assumptions about the probability of exposure, the bounds 
will be narrower, as we describe in Section External Data and 
Sensitivity Analysis.

In future study, we will formally consider generalizabil-
ity of the different vaccine effects on different scales, including 
the CECE, which could be applicable to settings with interfer-
ence outside of the randomized experiment.

Figure 3.  Illustration of the relation between the sensitiv-
ity parameters P(Y = 1|E = 1,A = 0) and P(E = 1|A = 0). 
Specifying one sensitivity parameter is sufficient to get a point 
estimate of the absolute CECE, as illustrated by three values of 
÷aCECE in the figure.
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