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What is selection bias?

Sensitivity analysis for selection bias using bounds
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Everything is selection bias

▶ Model selection
• Problems with statistical inference

▶ Confounding
• In certain fields… “selection into treatment”

▶ Non-generalizability/transportability
• Magnitude of effect in sample not the same as in target
population

▶ Collider stratification
• Bias for causal effects even within sample and under the
null

[Smith, 2020]

2



Selection bias in this talk

𝐴: exposure of interest (binary for simplicity)
𝑌 : binary outcome of interest
𝑆: indicator of selection into study (𝑆 = 1 if selected, 𝑆 = 0 if
eligible but no data)

We can estimate an observed risk ratio

RR𝑜𝑏𝑠
𝐴𝑌 = Pr(𝑌 = 1 ∣ 𝐴 = 1, 𝑆 = 1)

Pr(𝑌 = 1 ∣ 𝐴 = 0, 𝑆 = 1)

which may not equal the true causal risk ratio RR𝑡𝑟𝑢𝑒
𝐴𝑌 .

▶ We will assume that if we could estimate Pr(𝑌 =1∣𝐴=1)
Pr(𝑌 =1∣𝐴=0) , we

would be estimating RR𝑡𝑟𝑢𝑒
𝐴𝑌 .
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Example fromHernán et al., 2004

Consider a randomized trial of anti-retroviral therapy (𝐴)
among people living with HIV, with a goal of preventing the
development of AIDS (𝑌 )

▶ Pr(𝑌 =1∣𝐴=1)
Pr(𝑌 =1∣𝐴=0) is the risk ratio among people randomized to
the intervention arm vs. standard of care

▶ If some people drop out of the study, we can only
estimate Pr(𝑌 =1∣𝐴=1,𝑆=1)

Pr(𝑌 =1∣𝐴=0,𝑆=1)

𝐴 𝑆 𝑌

I’ll use boxes around nodes on graphs to indicate conditioning on
those nodes.
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Whymight bias arise?

Those eligible for the study are not a random sample of all
people living with HIV… is that a problem?

▶ Perhaps, if we’re trying to estimate how effective
treatment would be in another context.

▶ This is a problem of generalizeability / transportability
(external validity)

But not when it comes to estimating valid causal effects.
▶ With complete follow-up, we can estimate the effect of

the drug in the target population from which the
participants came.

▶ With loss to follow-up, we can’t even estimate that (no
internal validity).

• Not even if we only want to infer things about the
people for whom 𝑆 = 1
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Why not?

The participants who were lost to follow-up are not a
random sample of all participants

▶ Perhaps the most severely immunocompromised (𝑈 )
people have trouble coming to study visits

▶ They are also at higher risk of developing AIDS

▶ Perhaps people experiencing side effects of treatment
no longer want to participate

𝐴 𝑆 𝑌

𝑈
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Common structure

Does Zika virus infection (𝐴) increase the risk of
microcephaly (𝑌 )?

▶ We only assess microcephaly among live births (𝑆 = 1).

▶ Elective terminations are not included (𝑆 = 0).

𝐴 𝑆 𝑌
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Is the selected group different?

We might assume that
▶ People who have more exposure to the virus are more

likely to choose to end their pregnancies (worried
about risks)

▶ People with less access to health care are less likely to
have access to abortion services

▶ There are factors that affect risk of microcephaly that
are correlated with access to health care

𝐴 𝑆 𝑌

𝑈
▶ The pregnancies most likely to not be terminated are

those at risk of microcephaly for other reasons
• It looks like exposure to Zika virus is associated with
increased risk of microcephaly 8



A note about confounding

▶ There are also confounders of the 𝐴 - 𝑌 relationship, of
course, since this study is observational

▶ Some of those might be the same factors causing
selection bias

• If we properly adjust for them to control confounding,
we also control selection bias

▶ If there are additional factors leading to selection bias
that aren’t confounders, we may not plan to measure
or adjust for them

▶ We’ll assume confounders are measured (in which case
we’re estimating RR𝑜𝑏𝑠

𝐴𝑌 within strata) or controlled by
study design

• Everything conditional on 𝐶 = 𝑐
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What is selection bias?

Sensitivity analysis for selection bias using bounds
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When you run into selection bias

I think there’s selection
bias in this study

Fix it!

Fix it analytically

It’s not my
study

I don’t have more in-
formation and am un-
willing to make (many)
more assumptions

Simple sensitivity
analysis for selection
(i.e., this talk)

1. Bounds based on
sensitivity parameters

2. Selection bias
“E-values”
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Framework for sensitivity analysis

Define the relative bias:

bias = RR𝑜𝑏𝑠
𝐴𝑌 /RR𝑡𝑟𝑢𝑒

𝐴𝑌

strength of selection 𝑋 ⟹

bias ≤ 𝑓(𝑋) ⟹

RR𝑡𝑟𝑢𝑒
𝐴𝑌 ≥ RR𝑜𝑏𝑠

𝐴𝑌 /𝑓(𝑋)

If 𝐴 is protective (RR < 1), invert everything
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1. Selection bias bounds

Propose values for 𝑋…

… and use 𝑓(𝑋) to “correct” the observed risk ratio
(conservatively)

RR𝑡𝑟𝑢𝑒
𝐴𝑌 ≥ RR𝑜𝑏𝑠

𝐴𝑌 /𝑓(𝑋)

13



2. Selection bias ``E-values''

What if the true causal effect were null?

bias = RR𝑜𝑏𝑠
𝐴𝑌 /1

bias ≤ 𝑓(𝑋)
RR𝑜𝑏𝑠

𝐴𝑌 ≤ 𝑓(𝑋)

Then the minimum strength of selection, in terms of 𝑋, that
could result in that much bias:

𝑋 ≥ 𝑓−1(RR𝑜𝑏𝑠
𝐴𝑌 )

We can also consider non-null true effects.
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Problem solved for unmeasured confounding

Define sensitivity parameters in terms of unmeasured
confounder(s) 𝑈

▶ Ding and VanderWeele 2016; VanderWeele and Ding
2017
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Solving the problem for selection bias

What do 𝑋 (the sensitivity parameters) and 𝑓(𝑋) (the
bound) need to look like to use either bounds or E-values as
a sensitivity analysis?

▶ A little more complicated than unmeasured
confounding

▶ It depends on the target population, the structure of
the selection bias, other assumptions you’re willing to
make
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1. Bound for inference in the whole population

If the structure of selection bias is such that 𝑌 ⟂⟂ 𝑆 ∣ 𝐴, 𝑈 :

bias ≤ (
RR𝑈𝑌 |(𝐴=1) × RR𝑆𝑈|(𝐴=1)

RR𝑈𝑌 |(𝐴=1) + RR𝑆𝑈|(𝐴=1) − 1) ×

(
RR𝑈𝑌 |(𝐴=0) × RR𝑆𝑈|(𝐴=0)

RR𝑈𝑌 |(𝐴=0) + RR𝑆𝑈|(𝐴=0) − 1)

▶ RR𝑈𝑌 |(𝐴=𝑎) = max𝑢Pr(𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑈 = 𝑢)
min𝑢′ Pr(𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑈 = 𝑢′)

▶ RR𝑆𝑈|(𝐴=𝑎) = max𝑢 Pr(𝑈 = 𝑢 ∣ 𝐴 = 𝑎, 𝑆 = 𝑠)
Pr(𝑈 = 𝑢 ∣ 𝐴 = 𝑎′, 𝑆 = 𝑠′)

17



1. Bound for inference in the whole population

The sensitivity parameters answer the questions:
▶ RR𝑈𝑌 |(𝐴=𝑎): To what extent is the outcome risk

increased by the unmeasured factor, within a single
level of the exposure?

▶ RR𝑆𝑈|(𝐴=𝑎): To what extent is some value of the
unmeasured factor more prevalent among the selected
compared to the non-selected group?
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Zika virus example: bound

▶ Suppose that lack of access to medical care was
associated with 2-fold higher risk of microcephaly
among both the Zika-exposed and unexposed
(conditional on measured factors)

• RR𝑈𝑌 |(𝐴=1) = RR𝑈𝑌 |(𝐴=0) = 2

▶ Suppose that lack of access to medical care for
pregnant women was up to 1.7 times more likely for
women without an induced abortion among the
Zika-exposed

• RR𝑆𝑈|(𝐴=1) = 1.7

▶ Suppose that access to medical care was up to 1.5
times more likely for women with an induced abortion
among the unexposed

• RR𝑆𝑈|(𝐴=0) = 1.5
19



Zika virus example: bound

Plugging in these plausible values, we have

(
RR𝑈𝑌 |(𝐴=1) × RR𝑆𝑈|(𝐴=1)

RR𝑈𝑌 |(𝐴=1) + RR𝑆𝑈|(𝐴=1) − 1)×(
RR𝑈𝑌 |(𝐴=0) × RR𝑆𝑈|(𝐴=0)

RR𝑈𝑌 |(𝐴=0) + RR𝑆𝑈|(𝐴=0) − 1) =

( 2 × 1.7
2 + 1.7 − 1) × ( 2 × 1.5

2 + 1.5 − 1) = 1.51
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Zika virus example: bound

▶ From de Araújo et al. (2018) we have R̂R𝑜𝑏𝑠
𝐴𝑌 = 73.1 for

the Zika-microcephaly relationship with a lower
confidence limit of 13.0.

▶ If our hypothesized values are true, we know that the
maximum selection bias would be a factor of 1.51.

• We can “correct” the point estimate and lower
confidence limit: 73.1 / 1.51 = 48.1 and 13.0 / 1.51 = 8.6.

• Under our assumptions, the true causal effect estimate
must be at least of that magnitude.
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2. E-value for selection bias

The observed risk ratio could be fully explained by selection
bias if, for 𝑎 = 0, 1:

RR𝑈𝑌 |(𝐴=𝑎) = RR𝑆𝑈|(𝐴=𝑎) ≥ √RR𝑜𝑏𝑠
𝐴𝑌 + √RR𝑜𝑏𝑠

𝐴𝑌 − √RR𝑜𝑏𝑠
𝐴𝑌

▶ This is a way to summarize the minimal “strength” of
selection bias that could explain away a result
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Zika virus example: E-value

√
73.1 + √73.1 −

√
73.1 = 16.6

If

RR𝑈𝑌 |(𝐴=0) = RR𝑈𝑌 |(𝐴=1) = RR𝑆𝑈|(𝐴=0) = RR𝑆𝑈|(𝐴=1) ≥ 16.6

it is possible that there is no causal Zika-microcephaly
relationship and the observed risk ratio was entirely due to
selection bias

▶ Worst-case scenario
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Extensions

▶ Different bound if only wish to make inference about
the selected group

▶ Assumptions about the directionality of the bias

▶ Some results on the risk difference scale

▶ Bound for selection bias and unmeasured confounding
(and misclassification)

[Smith and VanderWeele, 2019; Smith, Mathur, et al., 2020]
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Software

Implemented in the R package EValue

library(EValue)
multi_bound(selection(), RRUsYA1 = 2, RRSUsA1 = 1.7,

RRUsYA0 = 2, RRSUsA0 = 1.5)

## [1] 1.511111

multi_evalue(selection(), OR(73.1, rare = TRUE), lo = 13)

## point lower upper
## RR 73.10000 13.000000 NA
## Multi-bias E-values 16.58415 6.670587 NA

Naturally extends to additional biases

[Mathur et al., 2018; Smith, Mathur, et al., 2020]
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