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Abstract

Observational epidemiology is critical for understanding population health but requires careful

consideration of possible biases. Tools for avoiding and managing these biases are essential.

This dissertation describes and implements methods for designing, analyzing, and assessing

observational studies, with a particular focus on target-trial emulation and bounds for biases.

In Chapter 1, I investigate the association between COVID-19 and preterm birth using data

from a large, international pregnancy registry. The principles of target-trial emulation guide

the design of an analysis that avoids immortal time bias while allowing for the evaluation of

gestational age-specic eects of the disease. I show that severe COVID-19 in the third trimester

increases risk of preterm birth, but carries less risk earlier in pregnancy, and mild or moderate

COVID-19 confers minimal added risk at any time during pregnancy. This conclusion is conrmed

with additional, complementary analyses.

Chapter 2 concerns a more complex target trial that implements sustained treatment strategies.

In the setting of recurrent prostate cancer, I design a trial to estimate the optimal approach for

initiating hormonal treatment based on biomarker characteristics. I then describe and conduct its

emulation using two complementary methods: the parametric g-formula and inverse probability-

weighted dynamic marginal structural models. I nd no evidence that any of the treatment

strategies I consider improves upon the approach of initiating treatment only with evidence of

overt metastasis.
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Finally, in Chapter 3, I improve upon existing methods for sensitivity analysis that can be used

to assess one type of bias at a time. Building on the E-value approach for unmeasured confounding,

as well as similar bounds for selection bias and misclassication, I consider the eects of these

three biases simultaneously. I show that a bound for the bias of the observed risk ratio can be

constructed as a function of sensitivity analysis parameters describing each type of bias. I apply

this method for sensitivity analysis to studies of exposures in pregnancy and demonstrate the

software developed to implement it.
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Introduction

Most evidence about what improves and impairs human health is produced from observational

data. From electronic health records to internet surveys, insurance claims to smartphone tracking,

data that can be used to answer questions about what makes us healthy is everywhere. One

diculty when using these data to address such questions is that exposures aecting health —

diet, medications, habits, toxins — are not evenly distributed across people, place, and time. Unlike

the selection of drug or placebo in a clinical trial, such exposures are not randomized within a

well-dened group of eligible participants. An important element of observational epidemiology

is the development and use of tools to understand cause-and-eect relationships in health when

we can’t run a randomized controlled trial.

Two tools in particular can help us better use observational data for causal inference. First,

target trials can help us design better observational studies by forcing us to imagine how we

would design and analyze a randomized controlled trial to answer the same question. Second,

using bounds for sensitivity analysis helps show us how robust our results are to possible biases.

This dissertation applies and advances these tools.

In Chapter 1 I investigate the relationship between COVID-19 and preterm birth using data

from a large, internet-based pregnancy cohort. Reports early in the pandemic suggested that

people with COVID-19 in pregnancy were more likely than expected to deliver preterm. These

initial case reports were descriptive in nature, describing how many patients had been admitted
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with COVID-19 and given birth and, of those, how many were preterm. Descriptive research of this

sort is critical as we seek to understand a novel disease. However, when it comes to interpreting

the statistics generated by these studies or making causal claims about the eects of COVID-19,

careful attention is required.

Consider what wemight see in the data if COVID-19 did not aect pregnancy duration. Suppose

instead that time of delivery was decided at conception and did not change, whether or not a

pregnant individual developed COVID-19. If COVID-19 randomly spread through the population,

it would aect with equal chance those who were destined to give birth at 32 weeks as those who

would carry their pregnancies until 42 weeks. However, the former are more likely to have given

birth before any COVID-19 exposure reached them, while the latter have an additional ten weeks

to be infected by the virus. If we compared the number of preterm and term deliveries that had

been exposed to COVID-19, we would therefore nd that relatively more term deliveries had been

exposed. Because COVID-19 is less likely to have occurred in preterm deliveries, it would appear

to have benets for pregnancy duration.

Other patterns of exposure and delivery are of course possible and could result in similarly

misleading conclusions. For example, a study of people with COVID-19 at delivery might nd that

preterm birth is relatively uncommon, even with severe disease, if most of the sample had already

passed the 37-week threshold that denes preterm delivery when exposed. By contrast, a study of

pregnant patients hospitalized with COVID-19 might nd the risk of preterm delivery to be quite

high if only those who give birth during the same hospitalization episode are included and those

who are discharged with ongoing pregnancies excluded because preterm delivery cannot yet be

assessed.

If, however, we imagine how we might design a trial to investigate this question, the proper

choice of sample and analysis is claried. Designing such a trial requires that we step away

from reality and imagine that we have the capability (and ethics approval) to infect pregnant

individuals with SARS-CoV-2, the virus that causes COVID-19, and even force them to develop
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certain symptoms. While there are many possible valid trial designs, if we want to learn about

eects on preterm birth throughout pregnancy, wemight imagine recruiting a group of participants

at varying stages of pregnancy, and randomize them to develop COVID-19 or not. (Ideally we

would recruit only people who don’t know each other, so we don’t risk that someone with COVID-

19 infects someone who was randomized not to have it.) Then we would compare: Of the group

that got COVID-19 at 22 weeks of pregnancy, how many delivered preterm, compared to the

group that enrolled in the trial at 22 weeks but were randomized to stay COVID-free? How about

those who enrolled and were randomized at 32 weeks? The COVID-negative group in the latter

comparison would be expected to have a lower total risk of preterm delivery compared to the

COVID-negative group enrolling at 22 weeks, because they have 10 fewer weeks in which to

deliver, but we may nd that the COVID-19 group at 32 weeks has a higher risk of preterm birth

than both their comparison COVID-negative group at 32 weeks and the COVID-positive group at

22 weeks, if COVID-19 increases the risk of preterm birth and has a stronger eect the later in

pregnancy it occurs.

In this rst chapter I implicitly use the principles of target-trial emulation to specically assess

not only week of infection but also COVID-19 severity and spontaneous vs. induced preterm

delivery. In addition, I describe two other complementary epidemiologic analyses that target the

same question.

In Chapter 2 I consider how to design and analyze a trial comparing treatment strategies for

recurrent prostate cancer. Previous studies, both experimental and observational, have compared

two strategies in this scenario: treat with hormone therapy immediately, or delay for several years.

The choice has implications for quality of life as well as possibly survival. However, there is not

yet sucient evidence for recommending one strategy over the other. Unlike the previous chapter,

in which COVID-19 was “assigned” at one point in time, these are sustained treatment strategies

in which treatment is given or withheld over a period of time.
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In this chapter I consider treatment strategies for which the exact time at which therapy will

be initiated is not known at baseline. Instead, time of initiation depends on disease progression, as

measured by the time in which it takes a biomarker – prostate-specic antigen, or PSA – to double.

A shorter doubling time indicates that the cancer is growing more quickly, and therefore treatment

may be more urgent. By assigning patients with recurrent prostate cancer to dierent doubling

time thresholds at which to start treatment, we can assess whether earlier treatment – in the sense

of disease progression, and not necessarily time – can improve survival. Such a treatment strategy

would preserve quality of life for as long as possible and perhaps avoid treatment altogether for

those whose cancer is slow-growing.

A treatment strategy that involves giving or withholding treatment over a period of time,

instead of just once at baseline, requires special care to be suciently well-dened. For example, if

our treatment strategy requires initiating treatment when a certain threshold of PSA doubling time

is reached, but if PSA is never measured, no one would ever get treatment no matter their assigned

threshold. Additional components such as this – monitoring of symptoms and biomarkers, a grace

period for transitioning to treatment, follow-up to ascertain outcomes – must be fully specied

in order to design a trial for a sustained treatment strategy. In addition, when participants don’t

follow their assigned treatment strategy (which is always the case when emulating a trial in

observational data, where no real-life assignment occurred), to compare treatment strategies we

must measure and properly account for time-varying confounders, or characteristics that aect

both adherence to treatment and survival.

In this chapter, I describe the components necessary to fully specify a target trial for a sustained

treatment strategy and specify them for a target trial to compare PSA doubling time thresholds.

I also describe two ways to analyze the data: the parametric g-formula and inverse-probability

weighted dynamic marginal structural models. Finally, I implement both methods using data from

an observational study of prostate cancer patients from clinics around the U.S.
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Even the best attempts to use observational data to answer causal questions about human

health can fall short. In Chapter 3, I consider the bias jointly inicted on observational studies by

unmeasured confounding, selection, and misclassication.

Confounding describes the fact that characteristics that make it more likely for someone to be

exposed to or treated with something also might make it more likely for them to experience an

outcome, a natural consequence of the fact that most exposures are not randomized. By measuring

and properly adjusting for confounders we can mimic randomization – as when we emulate a

target trial. When confounders are unmeasured (because, for example, it might be dicult to

conceptualize, much less measure, all the structural, social, and behavioral characteristics that

lead someone to have a particular diet or take a particular medication), we might want to know

whether we would still see an association – the causal eect – between the exposure and outcome

of interest, had we been able to take the unmeasured confounding into account.

Similarly, selection bias can result when there are unmeasured characteristics associated both

with selection into a study and with the exposure and outcome of interest. Dierences in the

people participating and not participating in a study – or those who are and are not included in the

analytic sample – may be due to dropout, missing data, time and energy available for volunteering,

or personal motivations to participate that align with the study’s goals. When the participants

and non-participants also have dierent probabilities of exposure and levels of underlying risk of

the outcome, estimates of the causal exposure-outcome relationship will be biased.

Finally, measurement error occurs when people are misclassied as having some characteristic

when they truly don’t, or vice versa. Particularly harmful is dierential misclassication, e.g.,

when people with the exposure are more likely to be misclassied as having the outcome (when

they really didn’t) than those who were unexposed. The same can occur when misclassication

of the exposure is associated with the outcome. For example, when reporting exposures that

occurred during pregnancy, someone who delivered prematurely may be more likely to falsely

assume they had COVID-19 (based on recall of symptoms, in the absence of a test) than someone
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with the same symptoms who delivered a healthy baby at term. This can make it appear that

COVID-19 is associated with an increased risk of preterm delivery.

When one or more of these biases threaten the validity of an epidemiologic study, it is worth-

while to conduct additional analyses to assess the robustness of the study’s ndings. In other

words, if we nd in the data that an exposure and outcome are apparently associated, would that

result still stand if we had been able to account for the possibly biasing factors? One method

for conducting such “sensitivity analyses” is assessing the maximum amount of bias that could

have been produced under certain conditions. In this chapter, I derive the bound for the bias

of an observed risk ratio subject to unmeasured confounding and selection bias and dierential

misclassication. This bound can be used to compute the minimum value of the causal risk ratio

under bias parameters that dene the strength of each bias. In other words, we can answer the

question: “At worst, how far o is the observed risk ratio from the causal risk ratio, if these biases

were of this strength?” I show how to apply this bound to two published studies concerning

exposures in pregnancy and ospring health.

In conclusion, this dissertation presents and demonstrates tools and methods to strengthen

the validity of using observational data to answer important questions about population health

and infer causality with greater condence.
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Timing and severity of COVID-19 during
pregnancy and the risk of preterm birth

Severe coronavirus disease 2019 (COVID-19) has been associated with preterm delivery. However,

previous estimates of risk of preterm delivery after COVID-19 are often subject to selection bias

and do not distinguish between infection early vs. late in pregnancy, nor between spontaneous

vs. induced preterm delivery. Pregnant and recently pregnant people who were tested for or

clinically diagnosed with COVID-19 during pregnancy enrolled in an international internet-based

cohort study between June 2020 and March 2021. Using several analytic approaches to minimize

biases, we compared the risk of preterm delivery (overall, spontaneous, and induced) among those

with and without COVID-19. We also considered dierent levels of disease severity and timing of

infection. There were 14,167 participants from 67 countries eligible for our study, of whom 5,857

had completed their pregnancies and reported delivery information; the remainder were censored

at the time of their last follow-up. Participants with COVID-19 before 20 weeks’ gestation (n =

2,630) had no increased risk of preterm delivery compared to those testing negative (n = 8,557),

with adjusted risks of 9.9% (95% CI 8.1, 12.0) vs. 9.8% (9.2, 10.5). Mild or moderate COVID-19 later

in pregnancy was also not associated with preterm delivery. In contrast, severe COVID-19 after

20 weeks’ gestation (n = 215) led to an increase in preterm delivery compared to mild or moderate

disease (n = 2,350). For example, the estimated risk ratio for severe COVID-19 at 35 weeks was 2.9

This chapter was co-authored with Camille Y. Dollinger, Tyler J. VanderWeele, Diego F. Wyszynski, and Sonia
Hernández-Díaz.



(2.0, 4.1); the corresponding risk ratios for induced and spontaneous preterm delivery were 3.6 (2.0,

6.8) and 2.4 (1.3, 3.9), respectively. This elevated risk was primarily due to an increase in induced

preterm deliveries, including Cesarean sections due to maternal illness, although an increase in

spontaneous preterm delivery was also observed. This study improves upon previous research

by providing gestational-age-specic estimates of risk and relative risks that use appropriate

comparison groups.
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1.1 Introduction

Coronavirus disease 2019 (COVID-19) has proven uniquely harmful to certain populations, in-

cluding the elderly and individuals with various comorbidities.1,2 However, its eects on the

pregnant population have been less easily discerned. Early studies suggested an elevated risk of

preterm birth among pregnant people with COVID-19 at delivery,3–7 but were limited by small

samples from single hospitals, little variability of disease severity or timing of infection during

pregnancy, failure to account for pregnancies that continue beyond the study period, and lack of

valid comparison groups.

When gestational age at infection is not considered, “immortal time bias” may reduce, negate,

or reverse any eect on prematurity.8 In addition, although the daily rate of preterm delivery

increases as week 37 approaches, the total risk of preterm delivery declines over the course of

pregnancy due to the shrinking window of time in which to deliver before term, making estimates

of risk after infection at dierent gestational ages dicult to interpret. Most studies have ignored

the longitudinal nature of pregnancy and examined the risk of preterm birth associated with

COVID-19 at delivery, neglecting to consider gestational age at infection. Finally, while associations

between severe COVID-19 and preterm delivery may reect biological eects of the viral infection

or the immunological response, they may also result from medically induced delivery based on

health concerns.5 No study has considered the timing of infection during pregnancy, the severity

of disease, the indication of prematurity, and the methodological issues simultaneously.

Using data from a large, international pregnancy cohort, we investigated whether COVID-19

increased the risk of preterm birth. We used multiple analytic approaches to disentangle the

role of severe disease and the timing of infection during pregnancy, allowing us to estimate

gestational-age-specic risks of preterm delivery after mild, moderate, and severe COVID-19

throughout pregnancy.
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1.2 Methods

Cohort

The International Registry of Coronavirus Exposure in Pregnancy (IRCEP) began enrollment

in June 2020 for English-speaking participants and has since opened in 9 additional languages;

enrollment is ongoing. Enrollees must be pregnant or within 6 months of end of pregnancy and

must have had a test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection

or a clinical diagnosis from a healthcare provider of COVID-19 during pregnancy. A valid mobile

phone number and internet access are required for enrollment, and participants are asked to

submit photos of their test results and delivery records with identifying details removed. Other

information is collected via several online survey modules covering demographics, reproductive

and health history, COVID-19 symptoms and treatments, and pregnancy and birth outcomes. The

Institutional Review Board of the Harvard T.H. Chan School of Public Health approved this study

(IRB20-0622).

SARS-CoV-2 infection and COVID-19

At enrollment, participants reported the date, type (nose/throat swab for PCR or blood test for

antibodies), and result (positive, negative, inconclusive) of a SARS-CoV-2 test during pregnancy.

Participants who were pregnant at enrollment recorded any additional tests during pregnancy on

monthly surveys. Clinical diagnoses, symptoms, and treatments of COVID-19 were also reported

by all enrollees. We dened COVID-positive participants as those with a positive test or a clinical

diagnosis conrmed by a healthcare provider. We considered date of infection to be at symptom

onset, if symptomswere reported, or at the time of a positive PCR test in asymptomatic participants.

COVID-negative participants were those reporting only negative test(s) at enrollment and no

clinical diagnosis of COVID-19.
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IRCEP participants as of March 31, 2021
n = 17532

Exclusions
Inconclusive SARS-CoV-2 test: n = 245 (1.4%)
Clinical diagnosis or positive antibody test without symptoms: n = 757 (4.4%)
No test or symptom onset date: n = 77 (0.5%)
No valid due date or gestational age at delivery: n = 1692 (10.3%)
First test/symptom onset after pregnancy: n = 223 (1.5%)
Reported test/symptom onset before February 1, 2020 or 4 weeks’ gestation: n = 283 (1.9%)
Pregnancy termination or loss before 20 weeks’ gestation: n = 88 (0.6%)

Eligible for study: n = 14167 (80.8%)

COVID-19 negative
n = 8557 (60.4%)

COVID-19 positive (test or clinical diagnosis)
n = 5610 (39.6%)

Severe COVID-19
n = 291 (5.2%)

Admitted to ICU, needed
respiratory assistance
(including ventila-
tion), or admitted to
hospital with any of:
• Organ failure
• Pneumonia or acute
respiratory distress syn-
drome

• Abnormal chest X-ray or
CT scan

• Chest pain, blue lips, or
breathing diculties

Moderate COVID-19
n = 2652 (47.3%)

Pneumonia, respiratory
distress, breathing dicul-
ties without hospitaliza-
tion; or hospital/ER/clinic
visit with any of:
• Upper respiratory symp-
toms

• Fatigue or myalgia
• Fever >38 C
• Loss of taste or smell
• Headache
• Diarrhea, nausea, or
vomiting

Mild COVID-19
n = 2092 (37.3%)

Any other symptoms

Asymptomatic COVID-19
n = 575 (10.2%)

No reported symptoms

Pregnancy outcomes
n = 4675

Pregnancy outcomes
n = 129

Pregnancy outcomes
n = 463

Pregnancy outcomes
n = 383

Pregnancy outcomes
n = 198

Figure 1.1: Flowchart of participant eligiblity from the International Registry of Coronavirus in Pregnancy

(IRCEP) and classication by COVID-19 severity.

Following clinical guidelines for classifying COVID-19 severity,9 we considered anyone who

was admitted to the intensive care unit (ICU), needed respiratory assistance (including ventilation

or extracorporeal membrane oxygenation (ECMO)), or was hospitalized with reported organ

failure, acute respiratory distress syndrome, pneumonia, an abnormal chest X-ray or CT scan,

or indications of signicant lung involvement to have had severe disease (Figure 1.1). Moderate

infections were those with lesser lung involvement or other symptoms that resulted in use of

health care outside of the home. Participants with other symptoms were considered mild, and

those without reported symptoms, asymptomatic.
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Gestational age and delivery outcomes

Participants reported due dates as determined by last menstrual period and by ultrasound when

available. Those who were pregnant at enrollment additionally reported date of last menstrual

period. Date of delivery, spontaneous pregnancy loss, or termination was reported upon pregnancy

completion (at baseline for those who joined postpartum), as was gestational age at end of

pregnancy. We used these data to determine gestational age at COVID-19 symptom onset and test

date(s), enrollment, and end of pregnancy, in some cases re-contacting participants for clarication

when dates were inconsistent.

Preterm birth was dened as delivery before 37 weeks’ gestation. Participants also reported

mode of delivery and reason for any Cesarean section (C-section). We classied C-sections by

whether they were elective or indicated by prior health history, indicated by positioning or size

of the fetus, associated with COVID-19 (due to maternal illness or precautionary), due to lack of

labor progress, or due to fetal or maternal/placental complications. We also collected information

on preterm labor and premature rupture of membranes. We considered preterm delivery to be

spontaneous if either spontaneous preterm labor or premature rupture of membranes was reported,

and medically induced otherwise.

Study sample

IRCEP participants as of March 31, 2021 who had not incurred early pregnancy loss (<20 weeks)

or termination were eligible for our study. We excluded those who reported COVID-19 before

February 1, 2020 due to concerns about reporting error, as well as those for whom we could not

estimate gestational age. In addition, we excluded those who reported no symptoms and a positive

blood (antibody) test, since we did not know when the infection occurred, or who had inconclusive

test results. In a sensitivity analysis we additionally excluded those who had received a clinical

diagnosis with no positive test.
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Participants who had not provided delivery information were excluded from analyses involving

mode of delivery. In addition, we excluded from some analyses those who were missing data

on baseline covariates. As a sensitivity analysis, we used multiple imputation to impute missing

baseline covariates.

Statistical analysis

We compared baseline characteristics and unadjusted risk of preterm delivery and delivery type

by COVID-19 status and severity and between those with and without outcome information.

Because asymptomatic participants’ positive test dates were closely linked to their delivery dates

(likely due to routine screening at delivery), articially increasing the apparent risk of preterm

delivery among asymptomatic infections close to 37 weeks, we excluded them from the remaining

analyses.10

Multivariable regression

Among the participants whose pregnancies had ended in live or still birth, we regressed an

indicator of preterm birth on an indicator of symptomatic COVID-19 to estimate the relative risk

of preterm birth after COVID-19 at any time vs. never before 37 weeks of pregnancy. Participants

with COVID-19 onset after 37 weeks’ gestation were excluded, as they were no longer at risk

for preterm birth. We also excluded participants with last menstrual periods within 45 weeks

prior to the analysis date (a cuto we varied in sensitivity analyses), to allow sucient time for

term deliveries and avoid over-inclusion of shorter pregnancies. We t the model using log-linear

regression (log-Poisson regression with robust standard errors due to convergence problems

with log-binomial regression), adjusting for possible baseline confounding by continent (Africa,

Asia, Europe, North America, South America), maternal age (years), pre-pregnancy BMI (kg/m2),

parity (primi-/multiparous), race/ethnicity (Asian, Black, Latina, White, mixed, other), pre-existing

condition (chronic diabetes, asthma, cardiovascular disease, or autoimmune disease), healthcare
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coverage (yes/no), and reason for testing (symptoms, contact tracing, surveillance, other/not

tested). To assess risks specically due to severe COVID-19, we then restricted the sample to

COVID-positive participants and estimated the relative risks of severe and moderate compared to

mild disease. Finally, we t multinomial logistic regression models for a three-leveled outcome

(spontaneous preterm, induced preterm, and term delivery) in order to estimate separate odds

ratios for each of spontaneous and induced preterm, relative to term delivery.

Accounting for gestational age: Time-to-delivery model

Because longer pregnancies allow for more opportunity for infection, even if COVID-19 did not

aect risk of preterm delivery, longer pregnancies could appear more likely exposed to the disease.

We therefore matched exposed and reference groups on gestational age-specic start of follow-up

(time zero). In addition, the risk of preterm birth diers by week of gestation even in the absence

of infection. We therefore considered gestational age-specic risks. Specically, we asked the

question, “What is the risk of preterm delivery in pregnancies aected by COVID-19 at week 𝑥 of

gestation, and how does it compare to the risk in pregnancies that are uninfected but ongoing at

week 𝑥?”

For every week of gestation through week 36 (the last week in which a pregnancy is at

risk of preterm delivery), we selected the individuals whose infection occurred that week and a

comparison group made up of all of the COVID-negative participants whose pregnancies were

still ongoing at that time (including before enrollment in IRCEP). COVID-negative participants

could appear in repeated comparison groups until they delivered or were censored. Participants

who had not yet delivered at the time of analysis, or whose delivery date was unknown (i.e.,

lost to follow-up), were censored at the last known gestational week at which we knew their

pregnancy was ongoing. Together the symptomatic positive and the test negative individuals made

up week-specic (time zero-specic) subcohorts, within which we computed the daily probability

of delivery from the gestational week at time zero through the rest of gestation. We estimated
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these probabilities separately for the negative, mild, moderate, and severe groups, using only the

observations that were still non-censored by that day. Assuming that censoring is independent of

delivery week within each COVID-19 group, the probability of preterm delivery is 1 minus the

cumulative product of the probability of not delivering each day up until week 37, analogous to a

Kaplan-Meier estimator.

To account for confounding and non-random censoring, we estimated the probability of

delivering on a given day with a pooled logistic regression model conditional on the covariates

previously described, as well as a exible function of gestational age (cubic splines) and terms for

COVID-19 group (negative, mild, moderate, severe). Because there were relatively few COVID-

positive individuals in any time zero-specic subcohort, we increased precision by tting a model

pooled over the participants in all subcohorts, adding cubic splines for time zero, a term for time

since infection, and product (“interaction”) terms for COVID-19 group and time since infection.

To compute risks of preterm delivery, we predicted probabilities from the model under each

condition at each time zero—mild, moderate, or severe infection, or no infection but ongoing

pregnancy—for each of the COVID-negative individuals remaining that week, then averaged

over the estimated individual risks of delivery before week 37. We combined estimates for early

pregnancy (through week 20) as there were no deliveries in those weeks and the number of

infections in each was small. Total risks for any infection (i.e., COVID-19 positive) were computed

by combining the risks for mild, moderate, and severe disease, weighted by the overall proportion

of COVID-positive participants at each level of severity.

We then partitioned our estimates of absolute risk of preterm delivery from the time-to-event

model into spontaneous vs. induced preterm. To do so, we t a logisitic regression model for

spontaneous delivery among all preterm deliveries, conditional on gestational age at delivery,

COVID-19 severity, weeks since infection, continent, pre-pregnancy BMI, parity, and race. We

estimated risk of spontaneous preterm as the probability predicted from that model multiplied by

risk of any delivery.
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We computed 95% condence intervals for the risk estimates, and for risk dierences and

ratios computed from these risks, using the non-parametric bootstrap with 1000 replicates (which

accounted for the fact that COVID-negative individuals could contribute to multiple subcohorts).

Robustness to unmeasured confounding: Case-time-control design

The previous analyses assume that the measured confounders were sucient to control confound-

ing; to reduce risk of bias by unmeasured between-person time-xed confounders, we additionally

conducted a within-person analysis using a case-time-control design.11,12 Although both the study

population and the parameter being estimated are dierent from each of the other analyses, an

association in this design would support the presence of eects. If there is an acute, transient

eect of COVID-19 on preterm birth, among people who delivered preterm (i.e., those susceptible

to prematurity), COVID-19 will more likely occur during the period in which it aected delivery

timing (i.e., presumptively the weeks prior to delivery) than any other period in pregnancy. We

therefore compared, among preterm births (cases), the probability of COVID-19 in the 30 days

preceding delivery to the probability of COVID-19 in a reference period 120-90 days prior to

delivery, when we hypothesized it is less likely to aect delivery. However, infection is not equally

likely in every week of pregnancy, even if it does not aect week of delivery, so we made the same

comparison among term births (controls) to estimate the time trend. We matched each preterm

case with one or more term controls on calendar year and month of due date. Among the controls

we compared the odds of COVID-19 in the gestational age windows that corresponded to those

of their matched cases, then divided out this time eect from the total eect among the cases.

This process is equivalent to tting a conditional logistic regression for exposure with indicators

for case/control status, risk/reference period, and their interaction, among a dataset with a row

for each observation in the risk and reference period. As a sensitivity analysis, we repeated the

analysis using a range of windows for the risk and reference periods. To assess dierences by

16



COVID-19 severity, we repeated the analysis using an indicator of severe disease as the exposure,

and separately with an indicator of mild/moderate disease.

1.3 Results

Sample

Of 14,167 eligible IRCEP participants from 67 countries, 60.1% joined the registry while pregnant

(Figure 1.1). Compared to individuals testing negative, those with COVID-19 were of similar ages

(30.1 vs. 30.5, among positive and negative, respectively) and had similar pre-pregnancy BMI (26.7

vs. 27.2). However, participants with positive tests were more likely to be from South America

(37.0% of positive vs. 15.7% of negative) and had fewer preexisting conditions (11.9% vs. 15.2%), the

latter likely reecting more screening of high-risk individuals (Table 1.1).

Table 1.1: Descriptive characteristics (n (%)) of eligible International Registry of Coronavirus Exposure in

Pregnancy (IRCEP) participants enrolled June 2020–March 2021.

COVID-19 negative
N = 8,557

COVID-19 positive
N = 5,610

Total
N = 14,167

Enrollment
Prospective (during pregnancy) 3,973 (46%) 4,536 (81%) 8,509 (60%)
Retrospective (after pregnancy) 4,584 (54%) 1,074 (19%) 5,658 (40%)

Prospective enrollees
Follow-up data 237 (6.0%) 155 (3.4%) 392 (4.6%)
Gestational age at enrollmenta 27 (18, 35) 25 (17, 33) 26 (17, 34)
Gestational age at symptom
onset/texta

21 (12, 30) 19 (10, 27) 20 (11, 28)

Retrospective enrollees
Follow-up data 4,438 (97%) 1,018 (95%) 5,456 (96%)
Gestational age at enrollmenta 49 (44, 54) 47 (43, 53) 49 (44, 54)
Gestational age at symptom
onset/testa

38.4 (36.9, 39.4) 33.6 (27.6, 37.6) 38.0 (35.4, 39.3)
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Table 1.1: Descriptive characteristics (n (%)) of eligible International Registry of Coronavirus Exposure in

Pregnancy (IRCEP) participants enrolled June 2020–March 2021. (continued)

COVID-19 negative
N = 8,557

COVID-19 positive
N = 5,610

Total
N = 14,167

COVID-19 severity
Negative 8,557 (100%) – 8,557 (60%)
Asymptomatic – 575 (10%) 575 (4.1%)
Mild – 2,092 (37%) 2,092 (15%)
Moderate – 2,652 (47%) 2,652 (19%)
Severe – 291 (5.2%) 291 (2.1%)

COVID-19 diagnosis/test type
Negative 8,557 (100%) – 8,557 (60%)
Positive by antibodies only – 531 (9.5%) 531 (3.7%)
Positive by throat/nose swab – 4,465 (80%) 4,465 (32%)
Positive clinically only – 614 (11%) 614 (4.3%)

Reason for COVID-19 test
Symptoms 1,222 (14%) 4,060 (72%) 5,282 (37%)
Contact tracing/risk zone travel 1,672 (20%) 970 (17%) 2,642 (19%)
Surveillance (healthy) 2,439 (29%) 224 (4.0%) 2,663 (19%)
Other/none 3,223 (38%) 355 (6.3%) 3,578 (25%)

Agea 31.0 (27.0, 34.0) 30.0 (27.0, 34.0) 31.0 (27.0, 34.0)
Healthcare coverage 6,629 (89%) 3,685 (85%) 10,314 (87%)
Pre-existing condition 1,101 (15%) 478 (12%) 1,579 (14%)
Primiparous 3,337 (46%) 1,691 (42%) 5,028 (44%)
Pre-pregnancy BMI
<25 3,187 (47%) 1,778 (48%) 4,965 (47%)
25-30 1,757 (26%) 1,019 (28%) 2,776 (26%)
≤ 30 1,841 (27%) 894 (24%) 2,735 (26%)

Continent
Africa 376 (4.4%) 237 (4.2%) 613 (4.3%)
Asia 488 (5.7%) 411 (7.3%) 899 (6.3%)
Europe 3,079 (36%) 1,304 (23%) 4,383 (31%)
North America 3,266 (38%) 1,585 (28%) 4,851 (34%)
South America 1,346 (16%) 2,073 (37%) 3,419 (24%)

a Median (interquartile range)
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Prospective participants, who had a mean gestational age of 25.3 weeks at enrollment (median

26.1) were much more likely to report a positive test than retrospective participants (53.3% vs. 19.0%

positive, respectively), reecting a pattern of COVID-19 screening near delivery resulting in more

negative (or asymptomatic positive) tests (Figure A.1), while a larger proportion of testing during

pregnancy was triggered by symptoms or for other non-pregnancy-related reasons. On average,

retrospective participants enrolled at 10.5 weeks after end of pregnancy (median 10.0).

At the time of analysis, participants had reported information about 5,820 live births and 37

stillbirths (Table 1.2). Of those who joined while pregnant, 4.6% had already provided outcome

data, 36.4% were less than 42 weeks’ gestation at the time of this analysis or reported still being

pregnant on a monthly survey, and 59.0% were more than 42 weeks but had not yet provided

outcomes (i.e., presumed lost to follow-up). Of those who joined after pregnancy, 96.6% had

provided at least some outcome data. Participants with positive tests or diagnoses were about

as likely to provide outcome data after pregnancy completion (or still be pregnant) as those

testing negative, both among prospective pregnancies (41.3% of positive vs. 40.6% of negative)

and retrospective pregnancies (95.0% of positive vs. 96.9% of negative). Participants providing

outcome data were equally likely as those who did not to have preexisting conditions (13.8%), and

age and pre-pregnancy BMI were similar across groups (Table A.1). Those with outcome data were

more likely from Europe or North America than other continents, were slightly more likely to be

primiparous (46.2% vs. 43.3%) and to have healthcare coverage (88.8% vs. 84.1%). Among the 5,034

pregnant individuals with symptomatic COVID-19 (89.7% of positive participants), we classied 291

as severe, 2,652 moderate, and 2,091 mild (Figure 1.1); 976 had available outcomes, with 30.2%, 11.7%,

and 9.1% preterm deliveries in the severe, moderate, and mild groups, respectively. Of preterm

births in the severe group, 82.1% were C-sections, compared to 61.8% in the mild and moderate

groups combined. Among the severe group, 54.8% of preterm C-sections specically mentioned

illness from or precautions due to COVID-19 as the reason for the procedure, compared to 7.8% in

the mild/moderate groups (Figure 1.3). Overall, 48.7% of preterm deliveries in the severe group

were emergency (vs. planned) C-sections following COVID-19 complications, fetal distress, acute
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Table 1.2: Delivery outcomes among IRCEP participants.

Negative
N = 4,675

Asymptomatic
N = 198

Mild
N = 383

Moderate
N = 463

Severe
N = 129

Preterm delivery 411 (8.8%) 22 (11%) 35 (9.1%) 54 (12%) 39 (30%)

Type of preterm
delivery

Indicated 131 (2.8%) 10 (5.1%) 12 (3.1%) 19 (4.1%) 16 (12%)

Spontaneous 280 (6.0%) 12 (6.1%) 23 (6.0%) 35 (7.6%) 23 (18%)

Premature rupture of
membranes

136 (2.9%) 6 (3.1%) 11 (2.9%) 17 (3.7%) 6 (4.8%)

Preterm labor 237 (5.1%) 12 (6.1%) 14 (3.7%) 39 (8.5%) 14 (11%)

Induced labor 1,891 (42%) 67 (36%) 123 (34%) 172 (39%) 44 (38%)

Cesarean-section 1,880 (41%) 95 (50%) 168 (45%) 218 (49%) 78 (64%)

Primary reason for
C-section

Elective or health
history

750 (16%) 33 (17%) 69 (19%) 87 (20%) 26 (21%)

Labor not
progressing

459 (10%) 19 (10%) 33 (8.9%) 45 (10%) 6 (5.0%)

Positioning or size 321 (7.0%) 17 (9.0%) 29 (7.8%) 26 (5.8%) 2 (1.7%)

Maternal/placental
problems

180 (3.9%) 12 (6.3%) 20 (5.4%) 24 (5.4%) 8 (6.6%)

Fetal distress, cord
or other problems

122 (2.7%) 1 (0.5%) 7 (1.9%) 9 (2.0%) 5 (4.1%)

COVID precautions 20 (0.4%) 12 (6.3%) 5 (1.3%) 12 (2.7%) 11 (9.1%)

COVID
complications

0 (0%) 0 (0%) 1 (0.3%) 5 (1.1%) 18 (15%)

Unknown 28 (0.6%) 1 (0.5%) 4 (1.1%) 10 (2.2%) 2 (1.7%)
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Figure 1.2: Mode of delivery among IRCEP participants, stratied by COVID-19.

maternal or placental problems, or labor not progressing, compared to 30.3% of mild and moderate

preterm deliveries.

Multivariable regression

Completed pregnancies with COVID-19 exposure any time before 37 weeks were 1.3 (95% CI 1.0,

1.7) times as likely to deliver preterm as those testing negative, and those with severe disease 2.5

(1.6, 3.9) times as likely as with mild disease (Table 1.3). The risk ratio comparing moderate to mild

disease was 1.1 (0.7, 1.7). From the multinomial logistic regression, COVID-19 during pregnancy

was associated with 1.1 (0.7, 1.6) times the odds of spontaneous preterm, and 2.1 (1.2, 3.7) times the

odds of induced preterm, relative to term birth. Odds ratios for severe vs. mild disease were 2.6

(1.3, 5.3) and 6.0 (2.4, 14.9) for spontaneous and induced preterm delivery, respectively (Table 1.3).
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Figure 1.3: Mode of delivery among symptomatic IRCEP participants with COVID-19, stratied by severity.

Time-to-delivery

Unadjusted gestational-age-specic absolute risks of preterm delivery varied depending on week

of infection. Dierences appeared to emerge after infection in the third trimester (Figure A.2).

Adjusted absolute risks of preterm delivery also varied by gestational age (Figure 1.4); for example,

the risk of preterm delivery after COVID-19 before 20 weeks of pregnancy was 9.9% (8.1, 12.0) and

9.8% (9.2, 10.5) among pregnancies that were ongoing but not infected at that time, compared to

7.5% (6.5, 8.5) and 6.9% (6.4, 7.3), respectively, at 35 weeks. Risk was 9.1% (6.1, 13.7) after severe

disease before 20 weeks and 19.4% (13.7, 27.6) after severe disease at 35 weeks. We combined mild

and moderate disease for the remaining analyses, as risks were essentially identical (estimated

separately in a sensitivity analysis, Figure A.5). Risk ratios comparing severe to mild/moderate

disease at 20 and 35 weeks were 0.9 (0.7, 1.3), and 2.9 (2.0, 4.1), respectively. Table 1.3 contains

absolute risks and risk ratios for additional weeks, and Table A.4 risk dierences. Compared to

mild/moderate disease, risks were higher for both spontaneous and induced preterm delivery after

severe COVID-19 (Figure 1.5). For example, after infection at 35 weeks, risk ratios were 2.4 (1.3, 3.9)

and 3.6 (2.0, 6.8) for spontaneous and induced preterm delivery, respectively (Tables A.2 and A.3).
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Case-time-control

Cases had higher odds of having had COVID-19 in the month prior to their preterm deliveries

compared to 3-4 months prior (odds ratio of 1.5 (0.8, 2.9)), accounting for time trends in exposure

(Table 1.3). In addition, they had 3.9 (0.7, 21.2) times increased odds of having had severe COVID-19

in the month prior to their preterm deliveries compared to 3-4 months prior, but only 0.9 (0.4, 1.9)

times the odds of a mild or moderate infection (Table 1.3).

Sensitivity analyses

Estimates from the log-linear analyses were almost identical when we imputed baseline covariates,

as well as when we excluded participants who had only a clinical diagnosis of COVID-19 and no

positive test (Table A.5). Varying the cuto for time since last menstrual period in the log-linear

analyses also resulted in almost identical estimates (Table A.6), as did excluding participants whose

negative tests were in the nal two weeks of delivery (Figure A.4). Estimating risks separately

for mild and moderate disease had almost identical results as combining the groups (Figure A.5).

Restricting our sample to only North American participants resulted in slightly larger risk ratios

for both severe vs. mild and moderate vs. mild disease (Table A.6). When we restricted the

analysis to prospective participants only, there was a smaller dierence in risk between severe and

mild/moderate disease (Figure A.5), likely because of the relatively small number of individuals

joining after severe disease but before delivery late in pregnancy. Varying timing and duration

of the risk period in the case-time control analysis conrmed our hypothesis that risk due to

infection occurred in the month prior to delivery, with particularly strong risk in the 2 weeks

preceding delivery (Figure A.3).
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Table 1.3: Estimates of risk of preterm birth from the various models and comparisons across levels of COVID-19. Gestational age-specic results are

presented by week.

Standardized risks by COVID-19a Risk ratiosa

Model Negative Positive Mild/moderate Severe Positive vs.
negative

Severe vs.
mild or
mild/moderate

Log-linear regression 1.3 (1.0, 1.7) 2.5 (1.6, 3.9)
Multinomial regression
(Induced)b

2.1 (1.2, 3.7) 6.0 (2.4, 14.9)

Multinomial regression
(Spontaneous)b

1.1 (0.7, 1.6) 2.6 (1.3, 5.3)

Case-time-controlb 1.5 (0.8, 2.9) 3.9 (0.7, 21.2)c

Gestational age-specic
Week 20 9.8% (9.2, 10.5) 9.9% (8.1, 12.0) 9.9% (8.2, 12.1) 9.1% (6.1, 13.7) 1.0 (0.8, 1.2) 0.9 (0.7, 1.3)
Week 21 9.8% (9.2, 10.4) 9.9% (8.1, 11.8) 9.9% (8.1, 11.8) 9.9% (6.9, 13.9) 1.0 (0.8, 1.2) 1.0 (0.8, 1.4)
Week 22 9.7% (9.1, 10.4) 10.1% (8.1, 12.1) 10.1% (8.0, 12.0) 10.8% (7.6, 14.8) 1.0 (0.8, 1.3) 1.1 (0.8, 1.4)
Week 23 9.7% (9.1, 10.4) 10.4% (8.1, 12.5) 10.3% (8.1, 12.3) 11.9% (8.4, 15.9) 1.1 (0.8, 1.3) 1.2 (0.9, 1.5)
Week 24 9.7% (9.1, 10.3) 10.7% (8.5, 12.9) 10.6% (8.3, 12.6) 13.2% (9.4, 17.4) 1.1 (0.9, 1.3) 1.3 (1.0, 1.6)
Week 25 9.6% (9.0, 10.3) 11.1% (8.9, 13.1) 10.9% (8.6, 12.8) 14.7% (10.6, 19.1) 1.1 (0.9, 1.4) 1.4 (1.1, 1.7)
Week 26 9.6% (9.0, 10.2) 11.4% (9.2, 13.3) 11.1% (9.0, 12.9) 16.3% (12.0, 20.9) 1.2 (1.0, 1.4) 1.5 (1.2, 1.9)
Week 27 9.5% (8.9, 10.2) 11.8% (9.6, 13.6) 11.4% (9.3, 13.1) 18.0% (13.7, 23.0) 1.2 (1.0, 1.4) 1.6 (1.3, 2.0)
Week 28 9.5% (8.8, 10.1) 12.0% (10.0, 13.8) 11.5% (9.5, 13.2) 19.6% (15.1, 25.4) 1.3 (1.1, 1.5) 1.7 (1.4, 2.2)
Week 29 9.4% (8.8, 10.0) 12.1% (10.0, 14.0) 11.5% (9.6, 13.4) 21.1% (16.2, 27.1) 1.3 (1.1, 1.5) 1.8 (1.5, 2.4)
Week 30 9.3% (8.7, 9.9) 11.9% (10.0, 13.9) 11.3% (9.5, 13.2) 22.3% (17.0, 28.7) 1.3 (1.1, 1.5) 2.0 (1.5, 2.6)
Week 31 9.1% (8.5, 9.7) 11.6% (9.7, 13.5) 10.9% (9.1, 12.7) 23.2% (17.4, 29.9) 1.3 (1.1, 1.5) 2.1 (1.6, 2.8)
Week 32 8.9% (8.3, 9.4) 11.1% (9.3, 12.8) 10.3% (8.7, 12.0) 23.6% (17.4, 31.1) 1.2 (1.1, 1.5) 2.3 (1.7, 3.1)
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Table 1.3: Estimates of risk of preterm birth from the various models and comparisons across levels of COVID-19. Gestational age-specic results are

presented by week. (continued)

Model Negative Positive Mild/moderate Severe
Positive vs.
negative

Severe vs.
mild or
mild/moderate

Week 33 8.5% (7.9, 9.0) 10.3% (8.8, 11.8) 9.5% (8.1, 10.9) 23.3% (17.2, 31.5) 1.2 (1.0, 1.4) 2.5 (1.8, 3.4)
Week 34 7.9% (7.4, 8.4) 9.1% (7.9, 10.5) 8.3% (7.1, 9.5) 22.2% (16.0, 30.4) 1.2 (1.0, 1.3) 2.7 (1.9, 3.7)
Week 35 6.9% (6.4, 7.3) 7.5% (6.5, 8.5) 6.8% (5.8, 7.7) 19.4% (13.7, 27.6) 1.1 (1.0, 1.3) 2.9 (2.0, 4.1)
Week 36 4.7% (4.4, 5.1) 4.9% (4.2, 5.6) 4.3% (3.8, 4.9) 13.5% (9.2, 20.0) 1.0 (0.9, 1.2) 3.1 (2.1, 4.7)

a Adjusted for continent (Africa, Asia, Europe, North America, South America), maternal age (years), pre-pregnancy BMI (kg/m2),
parity (primi-/multiparous), race/ethnicity (Asian, Black, Latina, White, mixed, other), pre-existing condition (chronic diabetes,
asthma, cardiovascular disease, or autoimmune disease), healthcare coverage (yes/no), and reason for testing (symptoms, contact
tracing, surveillance, other/not tested).

b Odds ratios
c Severe vs. other
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1.4 Discussion

In a large, diverse pregnancy cohort, we found that severe COVID-19 late in pregnancy may double

or triple the probability of preterm delivery, depending on the week of infection, but that increased

risk due to milder disease, or earlier in pregnancy, is likely minimal. Much of the eect of severe

COVID-19 appears to be due to emergency Cesarean sections and other induced preterm deliveries:

compared to 25% of preterm births among COVID-19 test negative individuals, almost 50% of the

preterm births associated with severe COVID-19 were delivered by emergency C-section. Of those,

half specically reported COVID-19 as the reason for the procedure. Indeed, some participants

in our study who underwent emergency C-section due to severe illness described harrowing

delivery experiences, writing, for example: “I was struggling to breathe and could not push”; “I

thought I was gonna die”; “I had an emergency Cesarean section while I was in a coma induced

by COVID-19, I was 24 weeks pregnant.” An eect of severe COVID-19 on iatrogenic preterm

delivery is clear.

Nonetheless, a higher proportion of COVID-19-aected pregnancies in our study also reported

preterm labor or rupture of membranes, making it impossible to rule out eects on spontaneous

preterm delivery. Intrauterine bacterial infection is known to be a major cause of spontaneous

preterm delivery,13 mediated through the innate immune response,14 and concern about the eects

of SARS-CoV-2 infection during pregnancy is justied by evidence from other viral infections.15,16

Research shows that inuenza infection, including 2009 pandemic H1N1 inuenza, increases

risk of poor birth outcomes, including preterm birth.17–20 Outbreaks of SARS and MERS, both

coronaviruses related to SARS-CoV-2, provided evidence that infection was particularly harmful

during pregnancy, with reports of preterm birth, intrauterine growth restriction, and mortality.21–23

Case reports, case series, and other initial studies early in the pandemic described outcomes

among pregnant people with COVID-19; a number of meta-analyses have since estimated risk

of preterm birth pooled from these studies.24–29 Risk estimates for preterm birth after COVID-

19 from meta-analyses range from at least 14% to 61%;30 with even wider variability across the
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individual studies, including geographically and by study size.27 Apparent dierences in risk

result from selection of hospitalized patients with severe or critical disease only, exclusion of

ongoing pregnancies, and inclusion of pregnancies that have already passed 37 weeks’ gestation

at symptom onset. Unfortunately, the aws that prevent interpretation of individual studies and

of comparisons between them aren’t attenuated through meta-analysis. Indeed, a recent review of

systematic reviews on COVID-19 in pregnancy found only one24 out of 52 was at low risk of bias.30

Our study improves upon previous estimates of risk by providing gestational-age specic risks

among pregnant people with both severe and mild/moderate disease using data from ongoing as

well as completed pregnancies.

Other studies, including some based on surveillance data, have also provided valuable com-

parisons with concurrent31–34 or historical35–37 COVID-19-negative pregnancies, or across the

spectrum of disease severity.38–43 Results are mixed, with many35,38–43 but not all32–34 providing

evidence that any vs. no infection, or more vs. less serious disease, are associated with higher

preterm risk. However, the extent to which prior studies have adjusted for confounders or avoided

other sources of bias diers. For example, the use of historical reference is questionable given

that the pandemic aected health care during 2020 beyond the infection itself; and the lack

of adjustment for risk factors for the infection and its severity (e.g., diabetes, obesity, asthma,

race/ethnicity) can confound the relative risk estimates. Moreover, studies that dene exposure

to COVID-19 as “any time during pregnancy” or “any time during third trimester” will be biased

by design, given the shorter opportunity for infection in preterm deliveries, and also obscure

gestational-age-specic risks. Ultimately, estimates of preterm risk or comparisons of risk between

groups need to target the same estimands to be directly comparable; this is particularly dicult

for questions surrounding preterm delivery, when timing of the exposure and of sample selection

play an important role.

We used three distinct designs to investigate whether COVID-19 aects risk of preterm birth;

although the estimates from these analyses are not themselves directly comparable due to dier-

ences in the underlying estimands, each addresses shortcomings of other designs. We addressed
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confounding both with multivariable adjustment as well as with within-person comparisons using

a case-time-control design. In addition, we accounted for several timing-related issues: longer

pregnancies are more likely to have been exposed to SARS-CoV-2, risk of preterm delivery depends

on gestational age at time zero (infection or reference), and preterm delivery cannot be assessed

among participants whose pregnancies are ongoing and under 37 weeks.

Nevertheless, our study has important limitations. Information on tests and gestational age

at delivery was self-reported. However, mothers are likely to remember results of their COVID

tests in the weeks afterward, as well as their estimated due date and date of delivery. In addition,

we have limited clinical measures compared to studies based on medical records or direct clinical

observation, limiting our ability to classify COVID-19 cases by severity. We used objective and

standard measures of severity (e.g., ICU, ventilation, ECMO) to maximize specicity, at the possible

cost of sensitivity (e.g., some hospitalizations may have been precautionary due to pregnancy).

This misclassication would tend to bias toward the null; therefore, we may have underestimated

associations with severe COVID-19.

Furthermore, while we do not have outcomes on some participants due to ongoing pregnancy,

others have been lost to follow-up. In our week-specic risk analyses we were able to use data

until the last known week of continued pregnancy under the assumption that loss to follow-up was

independent of preterm birth, conditional on covariates. In addition, although we had participants

worldwide, some countries were represented more than others, and within-country sampling

was not random. While our study is more widely representative than previous studies, there

are undoubtedly people who aren’t represented, in particular those without sucient internet

access. We may be missing other populations badly aected by the pandemic and who should be

prioritized in further research. Although the intensity of the pandemic may dier geographically,

biologic eects of COVID-19 may be less likely to vary across the population. However, if the

eect is mediated through precautionary early C-sections to avoid transmission or maternal

complications during labor, then populations unable or hesitant to conduct these would not see

an increased risk of preterm delivery; instead, risk of other periconceptional morbidities may rise.
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In conclusion, this study suggests that with respect to preterm birth, prevention of COVID-19 is

especially important in the second half of pregnancy. Protective measures should be taken to avoid

SARS-CoV-2 infection and symptoms should be closely monitored to avoid disease progression.

Much of the increased risk of prematurity due to severe disease is likely iatrogenic, due to urgent

delivery in response to maternal or fetal decline. Vaccines could lower the risk of infection, the

rst step in the causal path towards severe disease, and improved treatments for COVID-19 could

lower risk of progression and thus prematurity by reducing indications for delivery; research into

these treatments should not exclude pregnant people.
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2

Emulation of a target trial with sustained
treatment strategies: An application to

prostate cancer

Recurrent prostate cancer is generally incurable, although treatment with androgen deprivation

therapy can prolong survival. Even in the absence of treatment, however, disease progression

may be slow, and negative impacts on quality of life may outweigh possible benets of initiating

treatment directly after recurrence. Previous studies have not determined whether immediate

treatment is preferable to deferred treatment, nor have they considered strategies for initiating

treatment based on characteristics of prostate-specic antigen (PSA), which can indicate disease

progression. We dene the protocol for a target trial comparing treatment strategies based on

PSA doubling time, in which androgen deprivation therapy is initiated only after doubling time

decreases below a certain threshold. Such a treatment strategy means the timing of treatment

initiation (if ever) is not known at baseline, and the target trial protocol must explicitly specify

the frequency of PSA monitoring until the threshold is met, as well as the duration of treatment.

We describe these and other components of a target trial that need to be specied in order for

such a trial to be emulated in observational data. We then use the parametric g-formula and

inverse-probability weighted dynamic marginal structural models to emulate our target trial in a

cohort of prostate cancer patients from clinics across the United States.

This chapter was co-authored with Xabier García de Albéniz, June M. Chan, and Miguel Hernán.



2.1 Introduction

When randomized trials are not feasible or timely, observational data can be used to emulate the

randomized trial that, if conducted, would answer the question of interest – the target trial.44

Observational emulations can result in eect estimates that match those from true randomized

trials,45–48 but these comparisons typically benet from the protocol of the target trial being explic-

itly specied.49 In particular, the treatment strategies under comparison need to be unambiguously

described, which may not be a simple task when the strategies are sustained over time.

As an example, consider the question of when to start treatment in people with previously

treated prostate cancer who experience a rise in prostate-specic antigen (PSA) without overt

metastasis or symptoms.50 The specication of the treatment strategies includes not only the

criteria for both treatment initiation (e.g., PSA greater than some value) and treatment discontinu-

ation (e.g., side eects or a planned intermittent treatment strategy),51,52 but also the duration of

the allowable period to start treatment after the criteria are reached (the grace period), and the

frequency of monitoring for those criteria.

Here we describe the components necessary to specify protocols for target trials involving

sustained treatment strategies. As an illustration we specify and emulate in observational data a

target trial of dynamic strategies for androgen deprivation therapy for recurrent prostate cancer.

We illustrate the use of two methods to adjust for time-varying confounding: inverse probability

weighting of dynamic marginal structural models53,54 and the parametric g-formula.55,56

2.2 The target trial

We previously emulated a target trial among people with prostate cancer and PSA-only relapse to

compare immediate initiation of treatment vs. deferral of treatment.57 Immediate initiation was

dened as androgen deprivation therapy prescription or orchiectomy within three months of the

PSA-based relapse, and deferral as a lack of treatment within two years of this relapse or until

33



evidence of progression. The estimates from our emulation were compatible with those from two

subsequent randomized controlled trials,58,59 which found small dierences in all-cause mortality

between the two treatment strategies. The 95% condence intervals for both the observational

and randomized eect estimates were very wide.57,59

One factor aecting prostate cancer prognosis after biochemical relapse is change in PSA over

time.60 However, the three previous studies57–59 considered treatment initiation strategies that did

not depend on evolving PSA levels. Assigning androgen deprivation therapy only to patients with

worsening prognosis might avoid or delay the costs and side eects of treatment51 for others (who

may not benet). We therefore designed a target trial that assigns treatment only when rapid

increases in PSA were observed. The key components of this protocol are summarized in Table 2.1

and below.

Briey, the trial would include individuals diagnosed with early-stage prostate cancer treated

with curative intent who later had evidence of recurrence that was only apparent as a rise in PSA

(approximately the same criteria as in the previous studies). Patients would be assigned to one

of 37 treatment strategies, each based on a PSADT threshold for treatment initiation (see below).

Each eligible individual would be followed from the assignment of the treatment strategy (time

zero) until death (the outcome of interest), administrative end of follow-up (10 years after time

zero), or loss to follow-up (2 years without contributing clinical data), whichever occurs rst.

The data from the target trial could be used to estimate both the intention-to-treat eect and the

per-protocol eect.61 The treatment strategies and statistical analysis plan are described in more

detail in the following sections.

Target trial: Treatment strategies

The target trial would compare treatment initiation strategies that depend on the individual’s

rate of change in PSA levels, i.e., the PSA velocity. A common measure of PSA velocity is the

PSA doubling time (PSADT), that is, the estimated time over which PSA would double, given
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observed values.62 Specically, we calculate PSADT from consecutive measurements of PSA at time

𝑠 and time 𝑡 as {log (2×PSA𝑠 )−log(PSA𝑠 )}×{date𝑡−date𝑠 }
log (PSA𝑡 )−log(PSA𝑠 ) = log (2) date𝑡−date𝑠

log
(
PSA𝑡
PSA𝑠

) where the dierence between

measurement dates is in days. The trial would include 37 treatment strategies of the form “Start

androgen deprivation therapy the rst time PSADT drops below 𝑥 days,” where the threshold

𝑥 varies from 0 to 360 in increments of 10. A threshold of 0 means that treatment would never

be initiated. The treatment duration would be left to be decided by the physician and patient,

but this target trial does not allow for intermittent treatment: once treatment is discontinued for

longer than one month, it is not to be re-initiated. This description of the treatment strategies is,

however, incomplete for the following four reasons:

First, because treatment may be clinically indicated in situations not dened solely by PSADT,

the treatment strategies need to specify the situations under which treatment is indicated regardless

of PSADT. For example, “Start treatment the rst time PSADT drops below 𝑥 days, or if a patient

shows other signs of progression based on imaging or severe symptoms.”

Second, because immediate initiation of treatment may be unfeasible, we need to also specify

the period during which treatment can be started (the grace period). For example, “Start treatment

within the three months following the rst time PSADT drops below 𝑥 days or the time a patient

shows other signs of progression based on imaging or severe symptoms.” In practice, randomized

trials rarely specify the duration of the grace period because it is understood that treatment will

be initiated reasonably soon after randomization. However, specifying the duration of the grace

period in the target trial is required in order to emulate it using observational data. Otherwise,

it would not be possible to determine whether an individual who initiated treatment, say, 1 year

after meeting initiation criteria has data compatible with the protocol of the target trial.

Third, because initiation of treatment during the grace period may follow many patterns (e.g.,

most people start treatment at the beginning of the grace period, or at the end of the grace period,

or uniformly throughout the grace period), we also need to specify the expected rate of treatment

initiation during the grace period. For example, “Start treatment with equal probability during any
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of the three months following the rst time PSADT drops below 𝑥 days, or if a patient shows other

signs of progression based on imaging or severe symptoms.” Again, actual randomized trials rarely

specify the expected rate of treatment initiation during the grace period, but this information is

required for the observational emulation, as we discuss below.

Finally, because the initiation of treatment depends on the frequency of measurement of PSA

and other characteristics, we also need to specify the intensity of monitoring. For example, “Start

treatment with equal probability during any of the three months following the rst time PSADT

drops below 𝑥 days, or if a patient shows other signs of progression based on imaging or severe

symptoms. Participants must visit their physician for tests, imaging, and/or symptom assessment in

addition to completing surveys at home not less than once every 2 years.”

Table 2.1: Description of a target trial to identify the optimal androgen deprivation therapy timing with respect

to prostate-specic antigen doubling time, and of its emulation in observational data.

Components Target trial Emulation of trial

Aim To identify the optimal PSA doubling time
at which to begin ADT with respect to 5-
and 10-year all-cause mortality after
PSA-only relapse.

Same.
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Table 2.1: Description of a target trial to identify the optimal androgen deprivation therapy timing with respect

to prostate-specic antigen doubling time, and of its emulation in observational data. (continued)

Components Target trial Emulation of trial

Eligibility
criteria

1. Histologically conrmed adenocarcinoma
of the prostate, clinically staged cT3aN0M0
or lower.

2. PSA relapse after denitive radical
treatment (prostatectomy and/or
radiotherapy), as evidenced by one of the
following: a) PSA rise above 0.2 ng/mL
beyond post-treatment nadir if initial
treatment was prostatectomy (with or
without radiation); b) PSA that did not fall
lower than 0.2 ng/mL if treated with
prostatectomy with salvage radiation; c)
Three successive PSA rises at least 30 days
apart if initial treatment was only radiation.

3. No symptomatic disease requiring
therapy, or any evidence of metastatic
disease.

4. Naive to ADT treatment (no orchiectomy,
and any previous ADT was more than 1
year in the past, and not for longer than 12
months).

5. Life expectancy at least 5 years.

6. PSA doubling time at relapse of 30 days
or more.

1. Same.

2. Same.

3. Same. Operationalized as
lack of any a) Positive
ndings on pelvis MRI,
abdomen CT, pelvis CT, or
bone scan at any time in the
past; b) Severe symptoms
(fatigue, bone pain, anorexia,
weight loss, abdominal pain)
at the time of relapse; c)
Progression noted in
physician notes.

4. Same. Operationalized as:
a) Never had orchiectomy; b)
No prescribed ADT within
the past year, or for more
than 12 months at any time.

5. Same. Operationalized
based on National
Comprehensive Cancer
Network guidelines
principles of life expectancy
estimation, using the Social
Security Administration life
tables.

6. Same.

37



Table 2.1: Description of a target trial to identify the optimal androgen deprivation therapy timing with respect

to prostate-specic antigen doubling time, and of its emulation in observational data. (continued)

Components Target trial Emulation of trial

Treatment
strategies

Initiate ADT within 3 months after PSA
doubling time drops below a prespecied
value, from 0 to 360 days in increments of
10. Under all strategies, ADT will be started
within 3 months after a patient experiences
further disease progression. Continuation of
ADT after initiation will be left at the
physician’s and patient’s discretion. Once
ADT has been discontinued, it will not be
reinitiated. Under all strategies, individuals
will continue to have PSA measured and
symptoms assessed at the physician’s and
patient’s discretion. Patients complete
study-specic surveys at baseline and every
six months thereafter.

Same.

Treatment
assignment

Each individual is randomized a treatment
strategy dened by a PSADT threshold.

Each individual is assigned to
all treatment strategies.

Follow-up Patients are followed from treatment
assignment (time zero) until death, loss to
follow-up (24 months without contact with
the study team via returned surveys, or
physician visits), or administrative end of
follow-up.

Same.

Outcome Death from any cause. Same.
Causal contrast Intention-to-treat eect and per-protocol

eect.
Observational analog of
per-protocol eect.
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Table 2.1: Description of a target trial to identify the optimal androgen deprivation therapy timing with respect

to prostate-specic antigen doubling time, and of its emulation in observational data. (continued)

Components Target trial Emulation of trial

Analysis plan Intention-to-treat analysis: Survival curves
and 5- and 10-year mortality estimates
within each treatment arm. Adjustment for
potential selection bias due to loss to
follow-up via IP weighting.

Per-protocol analysis: same except that
individuals are censored at non-adherence
and uncensored individuals are assigned IP
weighs that are a function of baseline and
time-varying variables. Alternatively, the
per-protocol analysis may be based on the
g-formula.

Observational analog of a
per-protocol analysis: same
as in target trial, except that
analyses are not conducted
separately by assigned
treatment strategy, and we
created 37 individuals
(clones) per eligible patient
and assigned one to each
strategy when using
censoring plus IP weighting.

Abbreviations

PSA, prostate-specic antigen; ADT, androgen deprivation therapy; PSADT, prostate-specic
antigen doubling time.

Target trial: Intention-to-treat analysis

In a small abuse of notation, we refer to strategy 𝑥 as the strategy in which treatment is initiated

within 3 months after PSADT drops below 𝑥 or disease progresses. To estimate the intention-to-

treat eect, we compare the survival curves between individuals assigned to each strategy 𝑥 . That

is, we estimate Pr(𝑌𝑡 = 1 | 𝑋 = 𝑥) where 𝑡 = 0, . . . , 120 months of follow-up and 𝑌𝑡 an indicator of

death from any cause during or before month 𝑡 .

We could estimate Pr(𝑌𝑡 = 1 | 𝑋 = 𝑥) nonparametrically. However, with so many treatment

arms, we may wish to obtain more precise estimates by making parametric assumptions, e.g., by

tting a pooled logistic regression model for the discrete-time hazard Pr(𝑌𝑡 = 1 | 𝑋 = 𝑥,𝑌𝑡−1 = 0)

with a time-varying intercept, modeled as natural cubic spline terms, and a covariate for treatment
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strategy 𝑥 , also modeled as cubic splines and product (“interaction”) terms with time. The model’s

predicted values are then used to compute the survival curve for each strategy.54

Additionally, if imbalances existed in baseline characteristics across groups, the model would

include them as covariates. We would then standardize the estimated probabilities to the dis-

tribution of the covariates to estimate marginal survival curves. Finally, if necessary, inverse

probability (IP) weighting would be used to adjust for selection bias from loss to follow-up.63

Target trial: Per-protocol analysis

To estimate the per-protocol eect, we would compare the survival curves under adherence to each

of the strategies. Because adherence is not randomized, we would need appropriate adjustment for

(possibly time-varying) confounders, that is, prognostic factors that are determinants of adherence

to the assigned treatment strategy, or their proxies. Let 𝐿𝑡 be the vector of measured covariates

in month 𝑡 , including an indicator of having a clinic visit in month 𝑡 , an indicator of disease

progression, an indicator of symptoms (bone pain, fatigue, weight loss, anorexia, and abdominal

pain), and PSA. 𝐿0 contains baseline covariates: D’Amico risk group, comorbidities, and age at

diagnosis; time from diagnosis to relapse; and calendar year, PSA, and PSADT at relapse.

To adjust for these confounders, we can use IP weighting or the parametric g-formula. Both

methods have been described elsewhere;54,56 we review them here. Under the assumption that

losses to follow-up and non-adherence happen at random within levels of the confounders, and

that all models (described below) are correctly specied, both methods consistently estimate

the survival probabilities had everyone adhered to each strategy and stayed under follow-up

throughout the duration of the study. We use the non-parametric bootstrap with 1000 samples to

estimate 95% condence intervals under each approach.
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IP weighting of a dynamic marginal structural model

We t the same pooled logistic model as for the intention-to-treat analysis with two modications.

First, individuals are censored if/when their observed treatment and covariate history is no

longer consistent with their assigned strategy 𝑥 . Censoring can occur for three reasons: the

individual initiates treatment before their PSADT drops below 𝑥 or before they experience disease

progression; the individual does not initiate treatment within the 3-month grace period after

meeting either of the criteria to start treatment; or the individual begins treatment again after

having previously concluded it. During the grace period, no individual can be censored. Also,

according to the protocol, individuals can stop at any time after treatment initiation, so no

individuals can be censored while receiving treatment. However, the protocol does not allow

for treatment re-initiation after discontinuation, so individuals will be censored if they begin

treatment after discontinuing it.

Second, to adjust for the potential selection bias introduced by censoring for non-adherence,

at each month 𝑡 we assign a time-varying IP weight to each individual. The denominator of

the weight is the probability of remaining uncensored through month 𝑡 , which is equal to the

probability of remaining uncensored in months 𝑘 = 0, ..., 𝑡 . The probability of being uncensored

is 𝑓 (𝐴𝑘 | 𝐿𝑘 , 𝐴𝑘−1, 𝑌𝑘−1 = 0), where 𝐴𝑡 is an indicator of treatment during month 𝑡 and 𝐴𝑡 the

treatment history from time 0 through time 𝑡 , during months with𝐴𝑘−1 = 0. Because our treatment

strategies allow treatment discontinuation at any time, the denominator is 1 for months with

𝐴𝑘−1 = 1. We can estimate 𝑓 (𝐴𝑘 | 𝐿𝑘 , 𝐴𝑘−1 = 0, 𝐴𝑘−2, 𝑌𝑘−1 = 0) via a pooled logistic model,

separately within treatment arms and separately among months with and without prior use of

treatment during the study.

If the protocol of the target trial species strategies of the form: “Start treatment with equal

probability during any of the three months following the [initiation threshold],” then we will

ensure that the per-protocol eect is estimated under this initiation pattern by multiplying the

weights during the grace period by an additional factor.54 For a grace period of 3 months, that
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factor is 1
4 for an initiator in the rst month of eligibility, 13 in the second, and 1

2 in the third; for a

non-initiator, the factors are 3
4 ,

2
3 , and

1
2 , respectively.

Finally, individuals are also censored at the end of any two-year period in which they did not

visit a physician or complete a survey at least once. We can also estimate IP weights to adjust for

potential selection bias due to this censoring.63

Parametric g-formula

The g-formula can be viewed as a generalized form of standardization of the conditional hazard

under each treatment strategy to the joint distribution of the time-varying covariates. To estimate

each component of the g-formula, we can t within each treatment arm a logistic model for

Pr(𝑌𝑡+1 = 1 | 𝐿𝑡 , 𝐴𝑡 , 𝑌𝑡 = 0), and logistic or linear models for the conditional density of each

of the time-varying covariates in the vector 𝐿𝑡 . We also need to t a logistic model for the

conditional probability of discontinuation of treatment 𝐴𝑡 because the protocol does not prescribe

the probability of stopping treatment after initiating. In contrast, the probability of treatment

initiation under each strategy is known: 0 before reaching the PSADT threshold, 1within 3 months

of reaching it (14 in the rst month, 13 in the second, 12 in the third, and 1 at the end of the grace

period), and 0 again if treatment is discontinued.

Finally, we need to assign a monitoring strategy that aligns with our trial protocol. The

probability of a clinic visit is estimated using a model in the observed data, but is set to 1 if there

has been no visit in the last 23 months, guaranteeing monitoring at least every 2 years.

We then standardize the probability of the outcome under each strategy 𝑥 by averaging over

all treatment and covariate histories, using the modeled densities. The resulting integral can be

approximated via Monte Carlo simulation.
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Target trial: Emulation

The Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) observational study

of prostate cancer patients began enrollment in 1995. The study has been described in detail

elsewhere.65 We used data through 2017, at which point over 14,000 biopsy-proven patients had

been enrolled at over 40 U.S. clinics and followed prospectively. Physicians provided clinical data

(diagnosis, start and stop dates of medications, outcomes, lab and imaging tests) and participants

provided a follow-up survey approximately every 6-12 months after a baseline questionnaire

(quality of life, other health-service use). Evidence of disease progression after relapse was based

on clinical notes describing severe symptoms or metastases seen on imaging. We used consecutive

PSA measurements to calculate PSADT. We set to the value of the 95th percentile of PSADT those

values that were greater than the 95th percentile (because of very slow-growing PSA)62 or were

undened because PSA was constant or decreased from one date to the next.66

We used these data to emulate the eligibility criteria, treatment strategies, outcome, and

follow-up of the target trial as summarized in Table 2.1.

Per-protocol analysis via IP weighting of a dynamic marginal structural model

We carried out the analysis described for the target trial (specications for each model are shown in

Table B.2). However, since treatment strategies are not assigned at random in observational studies,

some modications had to be made. First, we estimated the probability of treatment initiation

among all eligible individuals, instead of separately within treatment arms. Second, because there

was no assignment of each individual to a single strategy, we allowed for each individual to be

part of the analysis for each strategy by copying the dataset for each value of 𝑥 considered, and

then censoring participants separately within each dataset when their observed data were not

consistent with that strategy.53,54 We truncated the total weights at the 99th percentile to avoid

near positivity violations.
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Per-protocol analysis via the parametric g-formula

The estimation procedures for the observational emulation were the same as for the target trial.

We used the R package gfoRmula.67 All analyses were conducted in R version 3.4.3.68

Sensitivity analyses

To explore the eects of our choice of target trial protocol, we repeated the two analyses using a

dierent distribution for treatment initiation during the grace period. We specied that the rate of

treatment initiation during the grace period would be the same that would have been observed in

the absence of an intervention until the end of the grace period, at which point treatment would

be initiated if it had not been previously. For the IP weighting approach, this meant that the

factors in the weights for treatment during the grace period were equal to 1. For the g-formula,

we additionally t a model for treatment distribution and during the grace period drew treatment

values with probabilities estimated from that model.

In addition, we investigated whether assigning treatment initiation thresholds based on another

function of PSA would better target those in need of treatment. Specically, we repeated our

original analyses but assigned treatment when average PSADT since relapse reached cutos

between 0 and 1800, in increments of 150.

Finally, we conducted an unadjusted analysis by tting an unweighted pooled logistic regres-

sion model for mortality in the censored and concatenated datasets, using only the terms for time

and treatment strategy.

2.3 Results

After applying the eligibility criteria, we found 1,229 eligible individuals (Figure 2.1). Their baseline

characteristics are shown in Table 2.2. About 60% underwent radical prostatectomy as their
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Figure 2.1: Flowchart of patient selection from the Cancer of the Prostate Strategic Urologic Research Endeavor

(CaPSURE) database through 2017 into the present study.

original treatment, and 47% were assigned to a medium clinical risk group at that time. The

median time to biochemical recurrence after diagnosis was 3.3 years.

Table 2.2: Baseline characteristics of the analytic sample of prostate cancer patients with biochemical recurrence

in the Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE), 1995-2017 (n = 1229).

Characteristic n (%)

Vital status
Alive at end of follow-up 972 (79%)
Died during follow-up 257 (21%)

Relapse date
1980s 2 (0.2%)
1990s 406 (33%)
2000s 741 (60%)
2010s 80 (6.5%)

Years to relapsea 3.29 (2.10, 5.35)
Original treatment
Radical prostatectomy 733 (60%)
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Table 2.2: Baseline characteristics of the analytic sample of prostate cancer patients with biochemical recurrence

in the Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE), 1995-2017 (n = 1229). (continued)

Characteristic n (%)

Radiotherapy 496 (40%)
PSA at relapsea 0.52 (0.32, 1.40)
PSADT at relapse (days)a 256 (124, 616)
ADT after relapse 345 (28%)
Comorbidities
0 or 1 512 (42%)
More than 1 504 (41%)
Missing 213 (17%)

Clinical risk group at diagnosis
Low 397 (32%)
Medium 576 (47%)
High 256 (21%)

Age at diagnosis
40-49 22 (1.8%)
50-59 246 (20%)
60-69 577 (47%)
70-79 367 (30%)
80-89 17 (1.4%)

a Median (interquartile range)

Of the participants, 347 actually received androgen deprivation therapy of any kind at some

point during follow-up, and 291 died from any cause. Because many individuals never initiated

treatment, there were fewer person-months in the data that were consistent with treatment

strategies dened by higher PSADT thresholds. For the treatment strategy dened by a threshold

of 0, there were 64,247 person-months and 145 deaths. For the treatment strategy dened by a

threshold of 360, there were 25,205 person-months and 64 deaths (Table B.1).

The estimated survival was similar under all strategies (Figure 2.2), though estimates were

imprecise. Risk dierences for 10-year mortality comparing the highest threshold (360) with the

lowest (0) (i.e., earlier vs. later initiation) were 0.02 (-0.31, 0.44) and -0.02 (-0.05, 0.04) when
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Figure 2.2: Survival curves estimated via various methods, comparing treatment strategies dened by PSA

doubling time thresholds. Thresholds range from 0 (darkest purple, least treatment) to 360 (brightest yellow,
most treatment).

estimated via IP weighting and with the parametric g-formula, respectively (Table B.3). Results

were similar when we varied the target trial protocol and the PSADT truncation level (Table B.3),

and the treatment thresholds (Table B.4).

2.4 Discussion

We estimated the per-protocol eect of treatment strategies for prostate cancer using observational

data. We showed that the treatment strategy needs to be unambiguously specied by describing

valid reasons for treatment initiation, as well the grace period for initiation and the patterns of

initiation during the grace period. Though some of these components may be unacknowledged

when estimating the per-protocol eect via IP weighting of a dynamic marginal structural model,

their specication is required when using the parametric g-formula.
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Treatment after initiation requires the same precise specication. Our treatment protocol

excluded intermittent treatment strategies, instead requiring that patients initiate treatment only

once. However, intermittent treatment with androgen deprivation therapy, in which treatment is

stopped and reintroduced multiple times based on closely monitored PSA and testosterone levels,

has similar ecacy with respect to overall survival as continuous therapy, with possibly better

quality of life.69 When complex rules may dene treatment continuation after initiation, a protocol

in which such treatment is assigned to follow patterns actually observed in the data is simplest

with the IP weighting approach: censoring after treatment initiation only occurs due to lack of

monitoring or loss to follow-up, and not for changes in treatment. Such a treatment protocol

would allow for both continuous and intermittent strategies at the same relative frequency in

which they occurred at the clinics from which the data was collected.

However, this approach is not easily extensible to the g-formula, which requires explicitly

specifying those treatment patterns. While we allowed the duration of the rst bout of treatment

to reect the observed data – in the IP weighting approach by not censoring anyone for continuing

or ceasing treatment, and with the g-formula by modeling the monthly probability of treatment

discontinuation in the data and accordingly assigning discontinuation – allowing for additional

treatment as observed in the data would have required more complex modeling. Alternatively, a

protocol that explicitly dened a single intermittent treatment strategy for everyone would have

been easier to implement with the g-formula, but would have resulted in censoring many more

observations with the IP weighting approach. Given the geographic and temporal variability in

our data, few participants are likely to have followed any one strategy.

Among the treatment strategies we did compare, wide 95% condence intervals imply that

our data are equally compatible with harm, benet, or no eect of early initiation of androgen

deprivation therapy on survival. As expected, condence intervals from the parametric g-formula

approach were narrower, reecting the additional parametric assumptions compared with the IP

weighting approach.
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Little prior evidence is available to determine the optimal treatment in prostate cancer patients

with asymptomatic biochemical recurrence, and this study does not add any conclusive evidence.

Ideally, risk of deadly metastatic disease should be balanced against the threat to quality of life

that hormonal treatment poses. US guidelines refrain from recommending a standard treatment in

this situation due to uncertainty about timing after early signs of biochemical recurrence.70 One

reason for hesitation in assigning all relapsing patients to immediate therapy is the prolonged

timeline of cancer spread in most patients. On average, clinical metastasis becomes apparent 7-8

years after biochemical recurrence; due to the age of the aected population, this is around or

beyond many patients’ expected lifespan even without cancer.50 One trial investigating delayed

treatment found that 41% of individuals in the delayed therapy arm died before reaching the point

at which they would initiate androgen deprivation therapy.58 Furthermore, the therapy leads to a

number of side eects, including weight gain and loss of muscle mass, osteoporosis and anemia,

and sexual dysfunction, which can reduce quality of life with possibly little benet.

In conclusion, we found little evidence that initiating androgen deprivation therapy on the

basis of PSA doubling time reduces all-cause mortality. Estimating counterfactual quantities under

exactly the same strategy with both the weighting and g-formula approaches allows for direct

comparison of the approaches. Since we aligned the study protocols, dierences reect random

error and possible model misspecication, but not dierent estimands. However, while comparable

results are reassuring, both methods rely on the same measured confounders and are subject to

violations of the identication assumptions. We made some simplifying assumptions about the

time-varying confounders that may have resulted in residual confounding. In addition, there

may be unmeasured confounding if the decision to initiate treatment was made on the basis of

factors not recorded by the clinician or participant, or not included in our analysis. We made

similar assumptions about the predictors of loss to follow-up; informative censoring could also

have biased our results.

When the target trial is a real randomized study that has been completed or that will be

conducted in the future, the results of an observational emulation can be compared to those
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from the trial to investigate any discrepancies.71 A well-conducted emulation (e.g., with aligned

eligibility criteria, treatment and outcome denitions, length of follow-up) reduces the possibility

of such discrepancies.
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3

Multiple-bias sensitivity analysis using bounds

Confounding, selection bias, and measurement error are well-known sources of bias in epidemio-

logic research. Methods for assessing these biases have their own limitations. Many quantitative

sensitivity analysis approaches consider each type of bias individually, while more complex

approaches are harder to implement or require numerous assumptions. By failing to consider

multiple biases at once, researchers can underestimate – or overestimate – their joint impact. We

show that it is possible to bound the total composite bias due to these three sources, and to use that

bound to assess the sensitivity of a risk ratio to any combination of these biases. We derive bounds

for the total composite bias under a variety of scenarios, providing researchers with tools to assess

their total potential impact. We apply this technique to a study where unmeasured confounding

and selection bias are both concerns, and to another study in which possible dierential exposure

misclassication and confounding are concerns. The approach we describe, though conservative,

is easier to implement and makes simpler assumptions than quantitative bias analysis. We provide

R functions to aid implementation.

This chapter was co-authored with Maya B. Mathur and Tyler J. VanderWeele.



3.1 Introduction

Assessing evidence for causation is fundamental in order to plan and target interventions and

improve public health. However, many causal claims in epidemiologic studies are met with

suspicion by both researchers and the general public, due to the fact that such studies are well

known to be subject to various biases. While faults in these studies can sometimes be addressed

directly – e.g., through better sampling schemes, blinded outcome ascertainment, more extensive

covariate measurements, etc. – other times confounding, selection bias, and measurement error are

unavoidable. In such situations, our next best option is to assess the extent to which a given study’s

conclusions might be sensitive or robust to these biases, and whether they threaten its conclusions.

Often, however, this is limited to a few sentences in a discussion section qualitatively assessing

the possibility of bias, sometimes appealing without quantitative justication to heuristics that

may or may not hold true in a particular study.72–74

The weak uptake of quantitative bias analysis in epidemiology belies its long history. Over a

half-century ago, Corneld and then Bross argued that the extent of possible bias was quantiable

based on observed data and possibly hypothetical quantities.75–78 Attempts to generalize these re-

sults, as well as consider other biases, sometimes simultaneously with confounding, followed.78–83

More recently, probabilistic bias analysis methods have been developed, allowing researchers

to propose distributions for various bias parameters across multiple biases, and to explore how

various combinations of those parameters would aect their results.84–89 Despite the availability

of these methods in textbook and software form,87,90,91 the actual uptake of such quantitative

bias analysis in empirical research has been limited,92 possibly because of the (at least perceived)

computational complexity93 or diculty in proposing plausible distributions.

Even more recently, simpler approaches to sensitivity analysis have hearkened back to the

early days of bias assessment, with the development of bounds for various biases that require

limited assumptions and at most basic algebra.94–96 However, a one-at-a-time approach is not

sucient for many studies subject to multiple sources of bias. In this article we extend the simple
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sensitivity analysis framework to multiple biases, describing a bound for the total composite bias

from confounding, selection, and dierential exposure or outcome misclassication.

3.2 The problem of multiple biases

Wewill describe a scenario in which all three types of bias are present, preventing the interpretation

of an observed risk ratio as a causal risk ratio. Consider a binary exposure 𝐴, a binary outcome

𝑌 , and measured covariates 𝐶 . (𝐶 may also include unmeasured factors that are controlled by

the study design.) Let 𝑆 be an indicator of the subset of the population for which data have

been collected, and let 𝐴∗ and 𝑌 ∗ denote misclassied versions of the exposure and outcome,

respectively. We use potential outcome notation to describe causal quantities: 𝑌𝑎 is the outcome

that would occur were exposure 𝐴 set to value 𝑎. We assume consistency, meaning that 𝑌𝑎 = 𝑌

for observations for whom we observe 𝐴 = 𝑎, and positivity, meaning that 0 < Pr (𝐴 = 1 | ·) < 1

within every stratum of the population.

We denote (conditional) independence between random variables with the symbol⊥⊥, such
that 𝑌𝑎⊥⊥𝐴 | 𝐶 implies conditional exchangeability; i.e., potential outcomes are independent of

exposure status conditional on 𝐶 . However, when 𝐶 does not capture all of the exposure-outcome

confounding, it is not true that 𝑌𝑎⊥⊥𝐴 | 𝐶 . We assume in that case that additionally adjusting for

some unmeasured factor(s)𝑈𝑐 would be sucient to address confounding, so that 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 .

Here, 𝑈𝑐 may be a single random variable or a vector of variables, which may be continuous or

take on any number of discrete values, or some combination. Similarly, we allow for selection

bias, which we dene as a lack of the conditional independence 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐, 𝑆 = 1 when it is

otherwise true that𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 . We likewise assume that the measurement of some variable(s)𝑈𝑠 ,

responsible for selection, would fully account for this bias, though the necessary conditions for it

to do so will depend on whether we intend to make inferences about eects in the total population,

or just the selected population. Finally, we allow for the possibility that the misclassication is

dierential, by which we mean that the sensitivity or specicity of the exposure measurement may

53



dier depending on the value of the outcome, or that the sensitivity or specicity of the outcome

measurement may depend on the exposure. In our notation, this means that it is not necessarily

true that 𝐴∗⊥⊥𝑌 | 𝐴,𝐶 or that 𝑌 ∗⊥⊥𝐴 | 𝑌,𝐶 . In this work we consider only misclassication of the

exposure or the outcome, but not both at once.

Motivating examples

There is great interest in how exposures during pregnancy may aect ospring health. However

important such questions are, they are dicult to answer with epidemiologic research. Ethics may

limit inclusion of pregnant people in randomized trials, and many exposures of interest are not eth-

ical or feasible to randomize to anyone. Case-control studies can eciently capture rare childhood

outcomes, but recalling pregnancy exposures several years later can result in measurement error.97

Prospective cohort studies can avoid this recall bias, but are often subject to loss to follow-up

when the duration between exposure and outcome assessment is long.98 Observational studies of

all types are threatened by uncontrolled confounding, and inter-generational confounders are

particularly dicult to assess.99 Importantly, studies like these are not aected by only one or

another of these biases, but may suer from multiple threats to validity.

To demonstrate our sensitivity analysis approach, we will consider two questions about

exposures during pregnancy and outcomes in children: whether HIV infection in utero causes

wasting (low weight-for-length), and whether vitamin consumption during pregnancy protects

against childhood leukemia.

Omoni et al. investigated the former hypothesis concerning HIV infection and wasting (among

participants of a vitamin A supplementation trial in Zimbabwe) and found that, compared to

children who were unexposed to HIV, those who had been infected with HIV in utero were more

likely to be below a weight-for-length Z-score of -2 as toddlers.100 The odds ratio comparing the

two groups was 6.75 (95% CI, 2.79, 16.31) at 2 years. Although randomized trial data were used

for the analysis, this was an observational study with respect to HIV infection, since infection is
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not randomized. The authors did not, however, adjust for any confounders. Furthermore, since

enrollment occurred at delivery, after possible HIV exposure and transmission, the choice of

whether to participate could have been aected by HIV status as well as other factors, leading to

selection bias if those factors aect future child growth. We will consider the role that confounding

and selection bias may play in this study.

As a second example, Ross et al. analyzed the relationship between vitamins and leukemia in a

case-control study and found a decreased risk of acute lymphoblastic leukemia among children

whose mothers consumed vitamin supplements during pregnancy.101 Their reported odds ratio,

which, with a rare outcome, approximates a risk ratio, of 0.51 (95% CI 0.30, 0.89) was conditional on

maternal age, race, and a binary indicator of education. However, there may be other confounders

that were not controlled, such as other indicators of a privileged or healthy lifestyle that are

both associated with vitamin use and protective against leukemia. We also may be concerned

about recall bias (dierential exposure misclassication) – that mothers of children with a cancer

diagnosis might be more likely to report not taking a vitamin even if they did so – so we consider

how exposure misclassication and unmeasured confounding can be assessed simultaneously.

3.3 The multiple-bias bound

Two overarching types of bias analysis have been described: one that explores how biases of a

given magnitude aect an estimate, which Phillips labeled “bias-level sensitivity analysis,” and

another that reduces the analysis to a summary of how much bias would be necessary for an

observation to be compatible with a truly null eect (or some other specied non-null eect),

which he called “target-adjusted sensitivity analysis.”73 We focus here on the former and address

the latter in the eAppendix. Here we present a multiple-bias bound, which allows researchers

or consumers of research to explore the maximum factor by which unmeasured confounding,

selection, and misclassication could bias a risk ratio.
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We begin with outcome misclassication, and then extend our results to exposure misclassi-

cation. We assume that the investigators have estimated RRobs
𝐴𝑌 ∗ =

Pr(𝑌 ∗=1|𝐴=1,𝑆=1,𝑐)
Pr(𝑌 ∗=1|𝐴=0,𝑆=1,𝑐) , the observed

risk ratio conditional on some value 𝑐 of the covariates, but wish to make inference about the

causal conditional risk ratio RRtrue
𝐴𝑌

=
Pr(𝑌1=1|𝑐)
Pr(𝑌0=1|𝑐) . We will assess bias on the relative scale, so that we

dene the bias as RRobs
𝐴𝑌 ∗/RRtrue

𝐴𝑌
.

Using bounds that have been previously described for misclassication, selection bias, and

unmeasured confounding considered individually,94–96,102 we can bound RRobs
𝐴𝑌 ∗ by factoring it

into RRtrue
𝐴𝑌

and components for each of the biases. The parameters that will be used to bound the

biases are as follows:

RR𝐴𝑌 ∗ |𝑦,𝑆=1 = max
𝑦

Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑆 = 1, 𝑐)

RR𝑈𝑠𝑌 |𝐴=𝑎 =
max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢) for 𝑎 = 0, 1

RR𝑆𝑈𝑠 |𝐴=𝑎 = max
𝑢

Pr (𝑈𝑠 = 𝑢 | 𝐴 = 𝑎, 𝑆 = 𝑎, 𝑐)
Pr (𝑈𝑠 = 𝑢 | 𝐴 = 𝑎, 𝑆 = 1 − 𝑎, 𝑐) for 𝑎 = 0, 1

RR𝑈𝑐𝑌 = max
𝑎

max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢)

RR𝐴𝑈𝑐
= max

𝑢

Pr (𝑈𝑐 = 𝑢 | 𝐴 = 1, 𝑐)
Pr (𝑈𝑐 = 𝑢 | 𝐴 = 0, 𝑐) .

These bias parameters have been described elsewhere, though separately.94–96 Briey, the bias

parameter dening the misclassication portion of the bound (RR𝐴𝑌 ∗ |𝑦,𝑆=1) describes the maximum

of the false positive probability ratio or sensitivity ratio within the selected population. The

selection bias parameters (RR𝑈𝑠𝑌 |𝐴=𝑎 and RR𝑆𝑈𝑠 |𝐴=𝑎) describe the maximum factors by which the

outcome risk diers by values of𝑈𝑠 , within strata of 𝐴, and the maximum factors by which some

level of 𝑈𝑠 diers between the selected and non-selected groups, within strata of 𝐴. Finally, the

unmeasured confounding parameters (RR𝑈𝑐𝑌 and RR𝐴𝑈𝑐
) describe the maximum factor by which

𝑈𝑐 increases the outcome risk, conditional on 𝐴, and the maximum factor by which exposure

is associated with some value of 𝑈𝑐 . Each of the sensitivity parameters is conditional on the
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covariates adjusted for in the analysis, and so describes the extent of bias above and beyond those

factors.

To simplify notation, dene the function 𝑔(𝑎, 𝑏) = 𝑎×𝑏
𝑎+𝑏−1 . Then we have the following bound

for the total composite bias.

Result 1:

If 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 and 𝑌⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 , then:

RRobs
𝐴𝑌 ∗/RRtrue

𝐴𝑌 ≤ BF𝑚 × BF𝑠 × BF𝑐

where BF𝑚 = RR𝐴𝑌 ∗ |𝑦,𝑆=1, BF𝑠 = 𝑔
(
RR𝑈𝑠𝑌 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1

)
× 𝑔

(
RR𝑈𝑠𝑌 |𝐴=0, RR𝑆𝑈𝑠 |𝐴=0

)
, and BF𝑐 =

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
. The derivation of this and the results that follow are given in the eAppendix.

Result 1 can be used to quantify the maximum amount of bias that could be produced by

parameters of a given value. Values for the sensitivity parameters may be taken from validation

studies, previous literature, or expert knowledge, or proposed as hypotheticals. Because the

sensitivity parameters are maxima, they are always greater than or equal to 1 and the composite

bound will thus be greater than or equal to 1. For an apparently causative observed exposure-

outcome risk ratio (>1) one could divide the estimate and its condence interval by the bound to

obtain the maximum that the specied biases could shift the estimate and its condence interval.

For a preventive observed exposure-outcome risk ratio (<1) one could multiply the estimate and

its condence interval by the bound to obtain the maximum that the specied biases could shift

the estimate and its condence interval, or equivalently reverse the coding of the exposure to

obtain a risk ratio >1. By applying the bound to the condence interval closet to the null, we can

make statements such as: “In 95% of repeated samples with the same sources of bias, adjusting

the condence interval in this way would result in a lower bound that is less than the true causal

risk ratio, provided the proposed parameter values adequately bound (i.e., are as large as or larger

than) the true parameter values.”

Although the bound allows for terms for all three biases, if any of them is judged not to

threaten a given study, or to bias toward the null, that factor can be omitted. Furthermore, the
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selection bias term can be simplied under certain assumptions;95 we illustrate in the rst example

below.

Result 1 is summarized in the rst row of Table 3.1. The assumptions required for the bound to

hold are listed under the biases to which they pertain, and the bound itself is in the nal column.

Note that the factorization of the bound implies an ordering of the biases: the misclassication

parameters are dened within the stratum 𝑆 = 1. Intuitively, this corresponds to a study in which

outcome measurement is done after people have been selected into the study, and so requires

considering the strength of dierential misclassication only within that group. In general, we

can think of biases as layers that we must peel o sequentially, and the order in which we do

so is the reverse of the order in which they occurred in the data.103,104 Confounding is generally

thought of as a property of nature within the population of interest, so occurs rst (though if

parameters describing the strength of confounding are derived based on misclassied exposure

or outcome, that may not be the case103), but the order in which selection and misclassication

occur may depend on the study design. We could alternatively derive a bound that depends on a

parameter describing the extent to which the outcome is misclassied in the total population, and

on others describing how selection is associated with the misclassied outcome. These parameters

may be more intuitive in a study with case-control sampling. Additionally, another ordering of

the biases may be preferable if data exists to justify estimates of the alternative parameters. We

dene those alternative parameters and derive that bound in the eAppendix. The second row of

Table 3.1 summarizes those results; there, the assumption for selection bias is an assumption about

the misclassied outcome, and the bound in the nal column is dened in terms of parameters

that reect that ordering.
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Table 3.1: Multiple bias bounds for various combinations of biases. The rst three columns show dierent combinations and ordering of the biases, as

well as the implied assumptions. The fourth column contains the expression that bounds the bias when those assumptions hold. The denitions of the

parameters are given in the main text.

Biases and associated assumptions Bound under the stated assumptions
Bias 1 Bias 2 Bias 3

unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

general selection bias
𝑌 ⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠

outcome misclassication 𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× 𝑔

(
RR𝑈𝑠𝑌 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1

)
×

𝑔
(
RR𝑈𝑠𝑌 |𝐴=0RR𝑆𝑈𝑠 |𝐴=0

)
× RR𝐴𝑌 ∗ |𝑦,𝑆=1

unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

outcome misclassication general selection bias
𝑌 ∗⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× RR𝐴𝑌 ∗ |𝑦 ×

𝑔
(
RR𝑈𝑠𝑌

∗ |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1
)
×𝑔

(
RR𝑈𝑠𝑌

∗ |𝐴=0RR𝑆𝑈𝑠 |𝐴=0
)

unmeasured confounding selected population outcome misclassication 𝑔
(
RR𝐴𝑈𝑠𝑐 |𝑆=1, RR𝑈𝑠𝑐𝑌 |𝑆=1

)
× RR𝐴𝑌 ∗ |𝑦

𝑌𝑎⊥⊥ 𝐴 | 𝑆 = 1,𝐶,𝑈𝑐,𝑈𝑠

unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

general selection bias
𝑌 ⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠

exposure misclassication
Pr (𝑌 = 0 | 𝑎, 𝑐, 𝑆 = 1) ≈ 1

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× 𝑔

(
RR𝑈𝑠𝑌 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1

)
×

𝑔
(
RR𝑈𝑠𝑌 |𝐴=0RR𝑆𝑈𝑠 |𝐴=0

)
× OR𝑌𝐴∗ |𝑎,𝑆=1

unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

exposure misclassication
Pr (𝑌 = 0 | 𝑎, 𝑐) ≈ 1

general selection bias
𝑌 ⊥⊥ 𝑆 | 𝐴∗,𝐶,𝑈𝑠

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× OR𝑌𝐴∗ |𝑎 ×

𝑔
(
RR𝑈𝑠𝑌 |𝐴∗=1, RR𝑆𝑈𝑠 |𝐴∗=1

)
×

𝑔
(
RR𝑈𝑠𝑌 |𝐴∗=0RR𝑆𝑈𝑠 |𝐴∗=0

)
unmeasured confounding selected population exposure misclassication 𝑔

(
RR𝐴𝑈𝑠𝑐 |𝑆=1, RR𝑈𝑠𝑐𝑌 |𝑆=1

)
× OR𝑌𝐴∗ |𝑎

𝑌𝑎⊥⊥ 𝐴 | 𝑆 = 1,𝐶,𝑈𝑐,𝑈𝑠 Pr (𝑌 = 0 | 𝑎, 𝑐, 𝑆 = 1) ≈ 1
unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

general selection bias
𝑌 ⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠

exposure misclassication
Pr (𝑌 = 0 | 𝑎, 𝑐, 𝑆 = 1) ≈ 1
Pr (𝐴 = 0 | 𝑦, 𝑐, 𝑆 = 1) ≈ 1

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× 𝑔

(
RR𝑈𝑠𝑌 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1

)
×

𝑔
(
RR𝑈𝑠𝑌 |𝐴=0RR𝑆𝑈𝑠 |𝐴=0

)
× RR𝑌𝐴∗ |𝑎,𝑆=1

unmeasured confounding
𝑌𝑎⊥⊥ 𝐴 | 𝐶,𝑈𝑐

exposure misclassication
Pr (𝑌 = 0 | 𝑎, 𝑐) ≈ 1
Pr (𝐴 = 0 | 𝑦, 𝑐) ≈ 1

general selection bias
𝑌 ⊥⊥ 𝑆 | 𝐴∗,𝐶,𝑈𝑠

𝑔
(
RR𝐴𝑈𝑐

, RR𝑈𝑐𝑌

)
× RR𝑌𝐴∗ |𝑎 ×

𝑔
(
RR𝑈𝑠𝑌 |𝐴∗=1, RR𝑆𝑈𝑠 |𝐴∗=1

)
×

𝑔
(
RR𝑈𝑠𝑌 |𝐴∗=0RR𝑆𝑈𝑠 |𝐴∗=0

)
unmeasured confounding selected population exposure misclassication 𝑔

(
RR𝐴𝑈𝑠𝑐 |𝑆=1, RR𝑈𝑠𝑐𝑌 |𝑆=1

)
× RR𝑌𝐴∗ |𝑎

𝑌𝑎⊥⊥ 𝐴 | 𝑆 = 1,𝐶,𝑈𝑐,𝑈𝑠 Pr (𝑌 = 0 | 𝑎, 𝑐, 𝑆 = 1) ≈ 1
Pr (𝐴 = 0 | 𝑦, 𝑐, 𝑆 = 1) ≈ 1
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Example

We illustrate the use of the multiple-bias bound to assess possible bias in the study by Omoni

and colleagues regarding the eect of HIV status on wasting.100 Wasting is dened by weight-

for-length Z-score of -2 or below and is a rare outcome, so we can interpret the reported OR of

6.75 (95% CI, 2.79, 16.31) as an approximate risk ratio. Since we have no reason to believe that

misclassication of wasting was dierential by exposure status (i.e., child or mother HIV status),

and non-dierential outcome misclassication would on average bias toward the null in this

situation,80 we will focus on unmeasured confounding and selection bias in this example.

The choice of whether to participate in the trial, and therefore in the analysis in question,

may have been inuenced by prior maternal HIV status. For example, people with HIV infection

may be hesitant to enroll due to stigma regarding infection, or fear of conrming their status.

Other factors may aect enrollment as well: parents with food insecurity may be more likely to

enroll in a vitamin-supplementation trial than those without, if they think it will improve their

children’s nutrition. This benet could outweigh the hesitancy for some, resulting in selection

bias: if a mother in the study is living with HIV, it is likely that her family is also food insecure,

making her child more at risk of wasting. Participation in the trial is therefore a collider in a

directed acyclic graph describing these relationships, as shown in Figure 3.1A. Similarly, there are

factors that are associated with HIV status that may also aect wasting; if these are not on the

causal pathway, we may be worried about unmeasured confounding. The authors did not adjust

for parity or marital status, though they report that primiparous women were less likely to have

HIV, as were married women. We may be concerned that children in single-parent households

and those with more siblings are at higher risk of wasting. To demonstrate interpretation of the

bound, we will propose values for the parameters describing the strength of these relationships

based on the data presented in the original article as well as our background knowledge. Suppose

that the most vulnerable in the population were more likely to participate in the trial, and thus

that wasting is more likely in children of participants than of non-participants, both among those
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b)

Figure 3.1: Directed acyclic graphs depicting the examples described in the text. a) This DAG depicts unmea-

sured confounding (due to𝑈𝑐 ) and selection bias (due to𝑈𝑠 ). In the graph, the assumptions 𝑌𝑎⊥⊥𝐴 | 𝑈𝑠 , 𝑆 = 1
and 𝑌𝑎⊥⊥𝐴 | 𝑈𝑐 are met. This corresponds to the rst example in the text, where 𝐴 indicates HIV infection,

𝑈𝑐 family factors including parity and marital status, 𝑆 participation in the trial, 𝑈𝑠 food insecurity, and 𝑌

wasting. b) This DAG depicts unmeasured confounding (due to 𝑈𝑐 ) and dierential misclassication of the

exposure (due to the 𝑌 → 𝐴∗
edge). In the graph, the assumption 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 is met. This corresponds to the

second example in the text, where 𝐴 indicates vitamin consumption during pregnancy, 𝐴∗
reported vitamin

consumption,𝑈𝑐 breastfeeding, 𝐶 maternal age, race, and education, and 𝑌 child leukemia.
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with HIV as well as those without. The assumption that the outcome is more likely in the selected

population of both exposure groups allows us to simplify the selection bias component of the

bound, so that the bounding factor only relies on two selection terms, as described by Smith and

VanderWeele.95 Suppose now that children of the most food-insecure mothers are 3 times as likely

to have extremely low weight-for-length scores than the least likely group, so that RR𝑈𝑠𝑌 |𝐴=1 = 3,

and that the mothers with HIV infection in the study compared to those not in the study are twice

as likely to be food insecure, so that RR𝑆𝑈𝑠 |𝐴=1 = 2.

Although the odds ratios from this study were not adjusted for parity and marital status, the

authors reported proportions of these characteristics stratied by exposure,100 which can aid in

coming up with a reasonable value for RR𝐴𝑈𝑐
. For example, suppose we estimate that 3% of the

women whose infants are infected with HIV are multiparous and unmarried, but that this is true

of 7% of the women without HIV. If this is the family situation with the largest disparity between

exposure groups, then we can specify RR𝐴𝑈𝑐
= 2.3. Now suppose that children in these most

precarious families have 2.5 times the risk of wasting than those in the least precarious, so that

RR𝑈𝑐𝑌 = 2.5.

Then we can calculate the bound as 3×2
3+2−1 ×

2.3×2.5
2.3+2.5−1 = 2.27. If those are the only sources of

selection bias and unmeasured confounding, and there is no measurement error, then this amount

of bias cannot fully explain the approximate observed RRobs
𝐴𝑌

of 6.75, since 6.75/2.27 = 2.97. Of

course, this observed value is subject to statistical uncertainty, so we can also consider the lower

limit of the condence interval, 2.79. If the proposed parameter values hold, then even in the

worst case scenario, RRtrue
𝐴𝑌

is still consistent with 2.79/2.27 = 1.23, an increase of about 23% in

risk of wasting at 2 years of age due to HIV infection. However, the parameter values we used

represent only a single reasonable choice. We might proceed by exploring a range of values, as we

demonstrate below when we introduce software.
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Exposure misclassification

When dierential exposure misclassication is a concern, we can derive a similar bound under

similar assumptions. However, unlike the bound for outcome misclassication, the bound for

exposure misclassication that is employed applies to the odds ratio, not the risk ratio, and

the sensitivity parameters are also not themselves risk ratios.96 We therefore cannot factor the

observed risk ratio as in the previous section. However, for a suciently rare outcome, odds ratios

approximate risk ratios, which allows for some progress.

In this section, RRobs
𝐴∗𝑌 =

Pr(𝑌=1|𝐴∗=1,𝑆=1,𝑐)
Pr(𝑌=1|𝐴∗=0,𝑆=1,𝑐) refers to the observed (approximate) risk ratio under

exposure misclassication, when the outcome is rare in the selected population. Denote with

OR𝐴∗𝑌 |𝑦,𝑆=1 the largest out of the false-positive odds ratio
{
𝑓 ′1/𝑓 ′0

}
/
{
(1 − 𝑓 ′1 )/(1 − 𝑓 ′0 )

}
, the sensitiv-

ity odds ratio
{
𝑠′1/𝑠′0

}
/
{
(1 − 𝑠′1)/(1 − 𝑠′0)

}
, the correct classication ratio {𝑠′1/𝑠′0}/{(1−𝑓 ′1 )/(1−𝑓 ′0 )},

and incorrect classication ratio
{
𝑓 ′1/𝑓 ′0

}
/
{
(1 − 𝑠′1)/(1 − 𝑠′0)

}
, where 𝑓 ′𝑦 = Pr(𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 =

0, 𝑆 = 1, 𝑐) and 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑆 = 1, 𝑐). Then the following bound holds approxi-

mately; i.e., to the extent that the odds ratio approximates the risk ratio.

Result 2:

If Pr (𝑌 = 0 | 𝐴∗ = 𝑎, 𝑆 = 1, 𝑐) ≈ 1 and Pr (𝑌 = 0 | 𝐴 = 𝑎, 𝑆 = 1, 𝑐) ≈ 1, then:

RRobs
𝐴∗𝑌/RR

true
𝐴𝑌 ≤ BF𝑚 × BF𝑠 × BF𝑐

where BF𝑚 = OR𝐴∗𝑌 |𝑦,𝑆=1 and BF𝑠 and BF𝑐 are as previously dened.

This result is summarized in the fourth row of Table 3.1, as are extensions involving exposure

misclassication.

Example

We can jointly assess the magnitude of bias due to dierential recall of vitamin use and unmeasured

confounding in the study of leukemia risk by Ross and colleagues, in which RRobs
𝐴∗𝑌 = 0.51 (95% CI

0.30, 0.89), by proposing realistic values for the bias parameters. A probabilistic bias analysis for
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misclassication was previously done in relation to this study, in which Jurek et al. conducted a

literature search for validation studies of multivitamin use during the periconceptional period.105

They found no pertinent articles, and instead used expert knowledge and bounds from the data

(e.g., by assuming correct classication is better than chance) to propose distributions for false

negative and false positive probabilities for the cases and controls, which we can use to inform

our choice of parameters. Because we think the case-control dierential in false negatives is

stronger than that for false positives, we might choose that Pr (𝐴∗ = 0 | 𝑌 = 1, 𝐴 = 1) = 0.15 and

Pr (𝐴∗ = 0 | 𝑌 = 0, 𝐴 = 1) = 0.1 to compute BF′𝑚 . Since we are dealing with a possibly protective

factor, however, and the bound is greater than 1 by denition, we reverse the coding of the exposure

to reect that the original estimate of RRobs
𝐴∗𝑌 = 0.51 represents a 1/0.51 = 1.96-fold increase in risk

associated with not taking vitamins. Therefore, 𝑓 ′1 = 0.15 and 𝑓 ′0 = 0.10, and BF′𝑚 = 1.59.

Jurek et al.’s probabilistic bias analysis used the crude 2-by-2 table from the original article, so

did not take into account even the few measured confounders.105 However, even those measured

confounders would likely not be sucient to control for confounding by healthy lifestyle, as there

is evidence that other healthy behaviors are associated with leukemia. For example, a recent

meta-analysis found that not breastfeeding compared to breastfeeding for at least 6 months was

associated with an increase in acute lymphoblastic leukemia risk by a factor of 1.22.106 Using

breastfeeding as a proxy for healthy lifestyle, for the unmeasured confounding parameters, we

will take RR𝑈𝑐𝑌 = 1.22 and RR𝐴𝑈𝑐
= 2, suggesting that children who weren’t breastfed are 1.22

times as likely to get leukemia, and that mothers who take multivitamins are twice as likely to

breastfeed than those who do not. A directed acyclic graph depicting this example is shown in

Figure 3.1B.

Using these values, we nd that 1.59 × 1.22×2
1.22+2−1 = 1.75, indicating that the observed risk ratio

may be biased by a factor of 1.75 if the dierential misclassication and unmeasured confounding

were of the strengths we proposed. Since we are dealing with a possibly protective factor, we

multiply the observed estimate of 0.51 and its condence interval (95% CI 0.30, 0.89) by the bound

(or equivalently divide the reverse-coded estimate of 1.96 by the bound), resulting in a bias-adjusted
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estimate and condence interval of 0.89 (95% CI 0.52, 1.56). Unlike the Jurek et al. sensitivity

analysis,105 which found that results were largely unchanged by exposure misclassication, we

have focused specically on a situation in which misclassication is dierential by outcome, and

have additionally taken both measured and unmeasured confounding into account. Doing so

indicates that the results may be sensitive to misclassication and uncontrolled confounding, as

can be seen if the chosen parameter values are thought to be reasonable.

Inference in the selected population

Results 1 and 2 are derived with respect to the true causal eect in the total population, despite

possible selection bias. In other situations, we may only be interested in the existence and

magnitude of a causal eect in the selected population. In this case, our estimand of interest

is RRtrue
𝐴𝑌 |𝑆=1 =

Pr(𝑌1 |𝑆=1,𝑐)
Pr(𝑌0 |𝑆=1,𝑐) . If only selection bias is present, one can derive a bound under the

assumption that 𝑌𝑎⊥⊥𝐴 | 𝑆 = 1, 𝑐,𝑈𝑠 .95 In the present context, we additionally accommodate

unmeasured confounding and measurement error. Consider unmeasured confounding by𝑈𝑐 such

that it is only the case that 𝑌𝑎⊥⊥𝐴 | 𝑆 = 1, 𝑐,𝑈𝑠,𝑈𝑐 . Therefore, we must consider the vector of

factors causing selection bias and unmeasured confounding𝑈𝑠𝑐 = (𝑈𝑠,𝑈𝑐). Dene the sensitivity

parameters RR𝑈𝑠𝑐𝑌 = max𝑎
max𝑢 Pr(𝑌=1|𝐴=𝑎,𝑐,𝑈𝑠𝑐=𝑢)
min𝑢 Pr(𝑌=1|𝐴=𝑎,𝑐,𝑈𝑠𝑐=𝑢) and RR𝐴𝑈𝑠𝑐

= max𝑢
Pr(𝑈𝑠𝑐=𝑢 |𝐴=1,𝑐)
Pr(𝑈𝑠𝑐=𝑢 |𝐴=0,𝑐) . Then under

outcome misclassication, we have the following bound.

Result 3:

If 𝑌𝑎⊥⊥𝐴 | 𝑆 = 1, 𝑐,𝑈𝑐,𝑈𝑠 , then:

RRobs
𝐴𝑌 ∗/RRtrue

𝐴𝑌 |𝑆=1 ≤ BF𝑚 × BF𝑠𝑐

where BF𝑚 is dened as in Result 1, and BF𝑠𝑐 = 𝑔
(
RR𝑈𝑠𝑐𝑌 , RR𝐴𝑈𝑠𝑐

)
. These latter parameters now

refer to the maximum risk ratio for the outcome among the selected comparing any two levels of

any of𝑈𝑠 and𝑈𝑐 , and the maximum ratio for any joint level of𝑈𝑠 and𝑈𝑐 comparing exposed to
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unexposed, among the selected. This bound holds under exposure misclassication with a rare

outcome in the selected population as well, with BF′𝑚 = OR𝐴∗𝑌 |𝑦,𝑆=1.

This result is summarized in the third row of Table 3.1.

3.4 Software

The R package EValue107 allows for easy calculation of the multiple-bias bounds for various

combinations of biases and assumptions, including all those presented in Table 3.1, as well as

the possible simplications to the selection bias bound, as in the rst example. The function

multi_bias() creates a set of biases according to the user’s specications. The user can then

input this object along with a proposed set of parameter values to the multi_bound() function to

calculate a bound.

For example, the biases in the HIV example can be set with HIV_biases <- multi_-

bias(confounding(), selection("general", "increased risk")). The command to calculate

the bound is then multi_bound(biases = HIV_biases, RRAUc = 2.3, RRUcY = 2.5, RRUsYA1

= 3, RRSUsA1 = 2). Similarly, for the vitamins-leukemia example, the biases are set with

leuk_biases <- multi_bias(confounding(), misclassification("exposure", rare_out-

come = TRUE, rare_exposure = FALSE)) and the bound command is multi_bound(biases =

leuk_biases, RRAUc = 2, RRUcY = 1.22, ORYAa = 1.59).

These functions can be used to prepare a table or gure of bounded bias-adjusted estimates

across a range of proposed parameter values. For example, Table 3.2 shows the upper bound

for the estimate of the protective eect of multivitamin use on leukemia across various values

for RR𝑈𝑐𝑌 and RR𝐴𝑈𝑐
(in the columns and rows), and for two values of the misclassication ratio

OR𝐴∗𝑌 |𝑦 above and below the diagonal. We can use this table to describe multiple scenarios under

which it would be possible for the true eect to be null. We can also see that even if, for example,

the prevalence of the unmeasured confounder, or set of confounders, diers greatly between
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Table 3.2: Corrected estimates for the eect of multivitamin use in pregnancy on childhood leukemia, taking

into account unmeasured confounding and recall bias. The original estimate was 0.51. Corrected estimates are

arranged in rows and columns by the parameters dening the unmeasured confounding, RR𝐴𝑈𝑐
and RR𝑈𝑐𝑌 .

The two parameters are interchangeable with respect to the bound, so a table of estimates corrected only for

unmeasured confounding would be symmetric. However, the estimates in the upper and lower triangles have

been corrected by misclassication parameters of dierent magnitudes. Below the diagonal, the misclassication

ratio is assumed to be 1.25; above the diagonal, it is assumed to be 1.5.

RR𝐴𝑈𝑐

RR𝑈𝑐𝑌 1.25 1.5 1.75 2 2.25 2.5 2.75 3

1.25
0.66

0.80
0.82 0.84 0.85 0.86 0.87 0.88 0.88

1.5 0.68
0.72

0.86
0.89 0.92 0.94 0.96 0.97 0.98

1.75 0.70 0.74
0.78

0.94
0.97 1.00 1.03 1.05 1.07

2 0.71 0.76 0.81
0.85

1.02
1.06 1.09 1.12 1.15

2.25 0.72 0.78 0.84 0.88
0.92

1.11
1.15 1.18 1.22

2.5 0.72 0.80 0.86 0.91 0.96
1.00

1.20
1.24 1.27

2.75 0.73 0.81 0.88 0.94 0.99 1.03
1.07

1.29
1.33

3 0.74 0.82 0.89 0.96 1.01 1.06 1.11
1.15

1.38

consumers and non-consumers of multivitamins (e.g., RR𝐴𝑈𝑐
= 3), a relatively small association

between the unmeasured confounder and leukemia (e.g., RR𝑈𝑐𝑌 = 1.25) and between vitamin use

and misclassifcation (e.g., OR𝐴∗𝑌 |𝑦 = 1.25) would at most lead to a bias-adjusted estimate of 0.74.

More examples are available in the eAppendix, and the package documentation is available online.

3.5 Discussion

We have described an approach to sensitivity analysis that we hope can help bridge the gap

between complex methods that require specifying many parameters and making restrictive
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assumptions, and simpler methods that allow for assessment of only one type of bias at a time.

The multiple-bias bound can be used to simultaneously consider the possible eects of biases that

are of dierent strengths. Researchers can propose values for the parameters based on background

knowledge, validation studies, or simply hypothetical situations, and assess the minimum possible

true risk ratio that would be compatible if the observed value were aected by biases of that

magnitude. When planning for future research, the bound can be used to compare the eects of

biases within a given situation and prioritize more extensive confounder assessment, a more valid

sampling/inclusion scheme, and/or better measurement techniques if resource constraints or data

collection options force one to choose among them. It may also show that certain improvements to

study design are futile; if the amount of an unavoidable bias greatly attenuates the anticipated risk

ratio estimate, investing resources into reducing another type of bias may not be worth it.108,109

There are a number of caveats and limitations to this approach. Although the calculations

involved in our approach are simple, the entire process of assessing bias should not be. Importantly,

it should be specic to the study design, the available data, and the research question; values

for the sensitivity parameters are meaningless without a frame of reference. Indeed, critiques of

the E-value for unmeasured confounding have emphasized the importance of clearly specifying

the confounder, or set of confounders, that have not been measured.110–112 The same should

be true for factors potentially causing selection bias, or the reason behind possible dierential

misclassication. Unmeasured confounders could be anything from a single missing risk factor

to the “ultimate covariate,”113 the variable encoding an individual’s causal type. Misclassication

may be negligible or close to non-dierential, or as bad as chance in one or another group; it is

up to researchers and readers to assess the plausibility of these situations with respect to a given

study and what was conditioned on in the analysis, and then assess how much bias they would

create. Like any tool, the multiple-bias bound can be misused; we encourage researchers to not be

careless, due to its apparent simplicity, but rather to be thoughtful in its use.

Additionally, in avoiding certain assumptions, we have necessarily invoked others. In particular,

the bounds we propose describe a “worst-case scenario” for the bias; in almost all settings, the
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actual bias will be smaller than the bound. For example, for the actual bias to obtain the bound

assumes that the unmeasured confounder has the distribution that maximizes confounding, given

the two parameters dening it.114 The same is true of selection bias and misclassication, e.g.,

the general selection bias bound implies that outcomes and exposures in the non-selected group

are distributed to result in the most possible bias. This is of course necessary for a bound to be a

bound, but many realistic conditions would not result in as much bias, and the bound should be

interpreted as the bias that could result from parameters of a given magnitude, not that necessarily

would result. The few assumptions that are required for the bound to hold may not be reasonable

in all settings; for example, the general selection bias assumption is unlikely to hold in case-control

studies. In addition, the interpretation of the bias-adjusted condence interval pertains to the

application of the adjustment to repeated samples with the same sets of biases; if the biases were

truly resolved in the design or analysis, the bounds would dier.

Finally, while we have suggested two possible orderings for factoring the bias, others that take

into account, for example, misclassication that is also dierential by an unmeasured confounder,

are possible. We have presented results for risk ratios, which can in many cases be extended to odds

ratios. However, our bound for exposure misclassication relies on a rare outcome assumption

that limits its use and results in an approximate bound. Because we are never sure of the true

values of the parameters that make up the bound, and the bound represents a worst-case scenario

not likely to hold anyway, this approximation is not likely to meaningfully aect interpretation.

Further work could be done to extend this approach to risk dierences or mean dierences, which

may be especially challenging because the bounds are more frequently non-informative.115 Other

approaches exist to quantify as simply as possible unmeasured confounding in linear or probit

models,116–119 but to our knowledge they have not yet been extended to multiple biases.

There is no single solution to the problem of bias in epidemiologic research. Some biases can

be corrected at the design phase, others in the main analysis, but the assessment of what bias

may remain should be a regular component of any study that attempts to quantify causal eects.
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The multiple-bias bound can make it simpler to do so, and we hope to encourage thoughtful

consideration of multiple sources of bias in epidemiologic research.
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A

Appendix to Chapter 1

A.1 Additional tables and figures

Table A.1: Comparison of descriptive characteristics (n (%)) of IRCEP participants who provided outcome data

and those who did not, but whose pregnancies were presumed completed (i.e., lost to follow-up).

No outcome data
N = 5,225

Provided
outcome data
N = 5,848

Total
N = 11,073

Enrollment
Prospective 5,023 (96%) 392 (6.7%) 5,415 (49%)
Retrospective 202 (3.9%) 5,456 (93%) 5,658 (51%)

Prospective
COVID-19 positive 2,662 (53%) 155 (40%) 2,817 (52%)
Gestational age at enrollmenta 31 (25, 36) 34 (31, 37) 32 (26, 36)
Gestational age at enrollmenta 46 (41, 53) 49 (44, 54) 49 (44, 54)

Retrospective
COVID-19 positive 56 (28%) 1,018 (19%) 1,074 (19%)
Gestational age at symptom
onset/testa

25 (18, 32) 27 (20, 33) 25 (18, 32)

Gestational age at symptom
onset/testa

37.1 (28.3, 39.0) 38.1 (35.6, 39.3) 38.0 (35.4, 39.3)

COVID-19 severity
Asymptomatic 263 (9.7%) 198 (17%) 461 (12%)
Mild 985 (36%) 383 (33%) 1,368 (35%)
Moderate 1,345 (49%) 463 (39%) 1,808 (46%)
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Table A.1: Comparison of descriptive characteristics (n (%)) of IRCEP participants who provided outcome data

and those who did not, but whose pregnancies were presumed completed (i.e., lost to follow-up). (continued)

No outcome data
N = 5,225

Provided
outcome data
N = 5,848

Total
N = 11,073

Severe 125 (4.6%) 129 (11%) 254 (6.5%)
COVID-19 diagnosis/test type
Negative 2,507 (48%) 4,675 (80%) 7,182 (65%)
Positive by antibodies only 268 (5.1%) 150 (2.6%) 418 (3.8%)
Positive by throat/nose swab 2,158 (41%) 863 (15%) 3,021 (27%)
Positive clinically only 292 (5.6%) 160 (2.7%) 452 (4.1%)

Reason for COVID-19 test
Symptoms 2,547 (49%) 1,011 (17%) 3,558 (32%)
Contact tracing/risk zone
travel

1,220 (23%) 635 (11%) 1,855 (17%)

Surveillance (healthy) 653 (13%) 1,696 (29%) 2,349 (21%)
Other/none 803 (15%) 2,506 (43%) 3,309 (30%)

Agea 30.0 (27.0, 34.0) 31.0 (27.0, 34.0) 31.0 (27.0, 34.0)
Healthcare coverage 3,364 (84%) 5,038 (89%) 8,402 (87%)
Pre-existing condition 503 (14%) 779 (14%) 1,282 (14%)
Primiparous 1,612 (43%) 2,589 (46%) 4,201 (45%)
Pre-pregnancy BMI
<25 1,593 (48%) 2,445 (46%) 4,038 (47%)
25-30 884 (27%) 1,412 (26%) 2,296 (27%)
≤ 30 811 (25%) 1,502 (28%) 2,313 (27%)

Continent
Africa 227 (4.3%) 290 (5.0%) 517 (4.7%)
Asia 446 (8.5%) 301 (5.1%) 747 (6.7%)
Europe 1,364 (26%) 2,012 (34%) 3,376 (30%)
North America 1,499 (29%) 2,419 (41%) 3,918 (35%)
South America 1,689 (32%) 825 (14%) 2,514 (23%)

a Median (interquartile range)
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Figure A.1: Unadjusted cumulative probabilities of delivery after COVID-19 in selected weeks of gestation. COVID-19 negative individuals in a given

week are those who are still pregnant at that week. Week 20 refers to all infections at or before week 20.
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Figure A.2: Gestational age at a) enrollment and b) time of symptom onset or test (if negative or positive, symptomatic), for participants who joined

while pregnant and within 6 months after pregnancy, stratied by COVID-19 severity.
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Table A.2: Estimates of standardized risks of spontaneous preterm delivery and risk ratios comparing COVID-19 positive vs. negative and severe vs.

mild/moderate.

Standardized risks Risk ratio Standardized risks Risk ratio

Negative Positive Positive vs.
negative

Mild/moderate Severe Severe vs.
mild/moderate

Week 20 6.6% (5.8, 7.4) 6.0% (4.4, 7.9) 0.9 (0.7, 1.2) 6.1% (4.5, 8.1) 4.7% (2.3, 8.0) 0.8 (0.4, 1.3)
Week 21 6.6% (5.8, 7.4) 6.0% (4.5, 7.7) 0.9 (0.7, 1.2) 6.1% (4.5, 7.8) 5.1% (2.6, 8.4) 0.8 (0.5, 1.3)
Week 22 6.6% (5.8, 7.4) 6.1% (4.4, 7.8) 0.9 (0.7, 1.2) 6.2% (4.5, 7.9) 5.5% (3.0, 8.9) 0.9 (0.5, 1.4)
Week 23 6.6% (5.8, 7.3) 6.3% (4.6, 8.0) 1.0 (0.7, 1.3) 6.3% (4.5, 8.0) 6.1% (3.2, 9.7) 1.0 (0.5, 1.5)
Week 24 6.5% (5.8, 7.3) 6.4% (4.7, 8.2) 1.0 (0.7, 1.3) 6.4% (4.7, 8.2) 6.8% (3.5, 10.5) 1.1 (0.6, 1.6)
Week 25 6.5% (5.8, 7.3) 6.6% (5.0, 8.4) 1.0 (0.8, 1.3) 6.6% (5.0, 8.4) 7.5% (4.1, 11.3) 1.1 (0.6, 1.7)
Week 26 6.5% (5.7, 7.2) 6.8% (5.2, 8.6) 1.1 (0.8, 1.4) 6.7% (5.1, 8.5) 8.3% (4.7, 12.2) 1.2 (0.7, 1.9)
Week 27 6.4% (5.7, 7.2) 7.0% (5.4, 8.8) 1.1 (0.8, 1.4) 6.9% (5.2, 8.6) 9.1% (5.2, 13.3) 1.3 (0.7, 2.0)
Week 28 6.4% (5.6, 7.1) 7.1% (5.4, 8.9) 1.1 (0.9, 1.4) 6.9% (5.2, 8.7) 9.9% (5.6, 14.3) 1.4 (0.8, 2.1)
Week 29 6.3% (5.6, 7.1) 7.1% (5.4, 8.8) 1.1 (0.9, 1.4) 6.9% (5.2, 8.6) 10.6% (5.8, 15.4) 1.5 (0.9, 2.3)
Week 30 6.3% (5.5, 7.0) 7.0% (5.3, 8.8) 1.1 (0.8, 1.4) 6.8% (5.0, 8.5) 11.2% (6.3, 16.7) 1.7 (0.9, 2.6)
Week 31 6.1% (5.4, 6.8) 6.8% (5.1, 8.5) 1.1 (0.8, 1.4) 6.5% (4.8, 8.3) 11.5% (6.6, 17.4) 1.8 (1.0, 2.7)
Week 32 6.0% (5.2, 6.6) 6.4% (4.8, 8.2) 1.1 (0.8, 1.4) 6.1% (4.4, 7.9) 11.7% (6.4, 17.9) 1.9 (1.1, 2.9)
Week 33 5.7% (5.0, 6.4) 5.9% (4.3, 7.7) 1.0 (0.7, 1.4) 5.6% (4.0, 7.2) 11.5% (6.2, 18.0) 2.1 (1.1, 3.2)
Week 34 5.3% (4.7, 5.9) 5.3% (3.8, 6.8) 1.0 (0.7, 1.3) 4.9% (3.5, 6.4) 10.9% (5.6, 17.6) 2.2 (1.2, 3.5)
Week 35 4.6% (4.0, 5.2) 4.3% (3.0, 5.6) 0.9 (0.6, 1.2) 4.0% (2.7, 5.2) 9.5% (4.8, 16.0) 2.4 (1.3, 3.9)
Week 36 3.2% (2.8, 3.6) 2.8% (1.9, 3.7) 0.9 (0.6, 1.2) 2.5% (1.7, 3.4) 6.6% (3.2, 11.7) 2.6 (1.3, 4.4)
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Table A.3: Estimates of standardized risks of induced preterm delivery and risk ratios comparing COVID-19 positive vs. negative and severe vs.

mild/moderate.

Standardized risks Risk ratio Standardized risks Risk ratio

Negative Positive Positive vs.
negative

Mild/moderate Severe Severe vs.
mild/moderate

Week 20 3.2% (2.5, 3.9) 3.9% (2.3, 5.4) 1.2 (0.8, 1.8) 3.8% (2.3, 5.4) 4.4% (2.1, 8.0) 1.1 (0.6, 2.0)
Week 21 3.2% (2.5, 3.9) 3.9% (2.4, 5.4) 1.2 (0.8, 1.8) 3.8% (2.3, 5.4) 4.8% (2.3, 8.4) 1.2 (0.7, 2.2)
Week 22 3.2% (2.4, 3.9) 4.0% (2.5, 5.5) 1.3 (0.8, 1.8) 3.9% (2.4, 5.4) 5.2% (2.7, 8.8) 1.3 (0.8, 2.3)
Week 23 3.1% (2.4, 3.9) 4.1% (2.6, 5.6) 1.3 (0.8, 1.9) 4.0% (2.5, 5.5) 5.8% (3.1, 9.5) 1.5 (0.8, 2.5)
Week 24 3.1% (2.4, 3.9) 4.3% (2.8, 5.7) 1.4 (0.9, 1.9) 4.1% (2.6, 5.6) 6.5% (3.6, 10.5) 1.6 (0.9, 2.6)
Week 25 3.1% (2.4, 3.8) 4.4% (3.0, 5.8) 1.4 (0.9, 2.0) 4.3% (2.7, 5.7) 7.2% (4.1, 11.4) 1.7 (1.0, 2.8)
Week 26 3.1% (2.4, 3.8) 4.6% (3.1, 6.0) 1.5 (1.0, 2.0) 4.4% (2.8, 5.8) 8.0% (4.6, 12.4) 1.8 (1.1, 3.2)
Week 27 3.1% (2.4, 3.8) 4.8% (3.2, 6.2) 1.5 (1.1, 2.1) 4.5% (3.0, 5.9) 8.9% (5.2, 13.9) 2.0 (1.2, 3.5)
Week 28 3.1% (2.4, 3.8) 4.9% (3.2, 6.4) 1.6 (1.1, 2.2) 4.6% (2.9, 6.0) 9.7% (5.7, 15.1) 2.1 (1.3, 3.8)
Week 29 3.0% (2.4, 3.7) 4.9% (3.1, 6.5) 1.6 (1.1, 2.2) 4.6% (2.8, 6.1) 10.5% (6.2, 15.9) 2.3 (1.4, 4.0)
Week 30 3.0% (2.3, 3.7) 4.9% (3.0, 6.5) 1.6 (1.1, 2.2) 4.5% (2.7, 6.1) 11.2% (6.7, 16.9) 2.5 (1.5, 4.3)
Week 31 3.0% (2.3, 3.6) 4.8% (3.0, 6.5) 1.6 (1.0, 2.2) 4.4% (2.5, 6.0) 11.6% (7.0, 17.5) 2.6 (1.6, 4.6)
Week 32 2.9% (2.3, 3.5) 4.6% (2.9, 6.3) 1.6 (1.0, 2.2) 4.2% (2.3, 5.8) 11.9% (7.0, 17.9) 2.8 (1.7, 5.0)
Week 33 2.8% (2.2, 3.4) 4.3% (2.6, 6.0) 1.6 (1.0, 2.2) 3.9% (2.1, 5.4) 11.8% (6.8, 18.1) 3.1 (1.8, 5.6)
Week 34 2.6% (2.0, 3.2) 3.9% (2.3, 5.4) 1.5 (0.9, 2.2) 3.4% (1.9, 4.8) 11.2% (6.3, 17.5) 3.3 (1.9, 6.1)
Week 35 2.2% (1.7, 2.7) 3.2% (1.8, 4.5) 1.4 (0.8, 2.1) 2.8% (1.5, 4.0) 9.9% (5.4, 15.9) 3.6 (2.0, 6.8)
Week 36 1.5% (1.2, 1.9) 2.1% (1.2, 3.1) 1.3 (0.7, 2.0) 1.8% (0.9, 2.7) 6.9% (3.6, 11.4) 3.9 (2.2, 7.6)

76



Table A.4: Risk dierences for overall, spontaneous, and induced preterm delivery, comparing COVID-19 positive vs. negative and severe vs. mild/moderate.

Positive vs.
negative

Severe vs.
mild/moderate

Positive vs.
negative
(Spontaneous)

Severe vs.
mild/moderate
(Spontaneous)

Positive vs.
negative
(Induced)

Severe vs.
mild/moderate
(Induced)

Week 20 0.1% (-1.8, 2.4) -0.8% (-3.3, 3.0) -0.6% (-2.4, 1.4) -1.4% (-3.8, 1.6) 0.7% (-0.8, 2.3) 0.6% (-1.5, 3.6)
Week 21 0.2% (-1.9, 2.1) -0.1% (-2.5, 3.6) -0.6% (-2.2, 1.2) -1.0% (-3.5, 2.0) 0.7% (-0.7, 2.2) 0.9% (-1.2, 4.1)
Week 22 0.4% (-1.9, 2.4) 0.7% (-1.7, 4.3) -0.5% (-2.1, 1.4) -0.6% (-3.2, 2.6) 0.8% (-0.6, 2.4) 1.3% (-1.0, 4.8)
Week 23 0.7% (-1.7, 3.0) 1.6% (-0.7, 5.1) -0.3% (-1.9, 1.6) -0.2% (-2.8, 3.0) 1.0% (-0.5, 2.5) 1.8% (-0.7, 5.2)
Week 24 1.0% (-1.3, 3.2) 2.7% (0.1, 6.3) -0.1% (-1.7, 1.8) 0.3% (-2.6, 3.7) 1.1% (-0.4, 2.6) 2.3% (-0.3, 6.1)
Week 25 1.4% (-0.9, 3.6) 3.9% (1.1, 7.8) 0.1% (-1.5, 2.0) 0.9% (-2.5, 4.5) 1.3% (-0.2, 2.8) 3.0% (0.1, 6.9)
Week 26 1.9% (-0.3, 3.8) 5.2% (2.1, 9.5) 0.3% (-1.2, 2.2) 1.5% (-2.3, 5.3) 1.5% (0.0, 2.9) 3.6% (0.5, 8.0)
Week 27 2.2% (0.1, 4.0) 6.6% (3.3, 11.4) 0.6% (-1.0, 2.4) 2.2% (-2.0, 6.3) 1.7% (0.2, 3.1) 4.4% (0.9, 9.2)
Week 28 2.5% (0.6, 4.3) 8.1% (4.3, 13.2) 0.7% (-0.9, 2.5) 2.9% (-1.6, 7.3) 1.8% (0.2, 3.3) 5.1% (1.5, 10.6)
Week 29 2.7% (0.7, 4.5) 9.6% (5.3, 15.2) 0.8% (-0.9, 2.6) 3.7% (-1.0, 8.5) 1.9% (0.2, 3.4) 5.9% (2.0, 11.5)
Week 30 2.7% (0.8, 4.6) 11.0% (6.1, 17.0) 0.8% (-1.0, 2.7) 4.4% (-0.4, 9.5) 1.9% (0.2, 3.5) 6.6% (2.4, 12.4)
Week 31 2.5% (0.7, 4.4) 12.3% (6.8, 19.0) 0.6% (-1.1, 2.6) 5.0% (0.1, 10.6) 1.9% (0.1, 3.5) 7.2% (2.9, 13.1)
Week 32 2.2% (0.4, 3.9) 13.3% (7.4, 20.7) 0.5% (-1.2, 2.4) 5.6% (0.4, 11.4) 1.7% (0.1, 3.4) 7.7% (3.3, 13.8)
Week 33 1.8% (0.2, 3.3) 13.9% (7.8, 21.9) 0.2% (-1.5, 2.0) 5.9% (0.8, 11.9) 1.5% (-0.1, 3.1) 8.0% (3.5, 14.1)
Week 34 1.2% (0.0, 2.5) 13.8% (7.7, 22.1) -0.1% (-1.7, 1.6) 6.0% (0.9, 12.1) 1.3% (-0.2, 2.8) 7.8% (3.4, 13.9)
Week 35 0.6% (-0.3, 1.7) 12.7% (6.9, 20.8) -0.3% (-1.7, 1.1) 5.6% (1.0, 11.5) 1.0% (-0.4, 2.3) 7.1% (3.1, 12.6)
Week 36 0.1% (-0.5, 0.9) 9.2% (4.9, 15.6) -0.4% (-1.4, 0.6) 4.1% (0.9, 8.6) 0.5% (-0.4, 1.4) 5.1% (2.2, 9.4)
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Table A.5: Comparison of risk ratios from complete-case (as in the main text) and multiply-imputed analyses.

Analysis Positive vs. negative Moderate vs. mild Severe vs. mild

Complete-case 1.3 (1.0, 1.7) 1.1 (0.7, 1.7) 2.5 (1.6, 3.9)

Multiply-imputed 1.3 (1.0, 1.6) 1.2 (0.8, 1.8) 2.7 (1.8, 4.2)

A.2 Sensitivity analyses

Table A.6: Estimates from various sensitivity analyses of the log-linear analysis.

Analysis Positive vs. negative Moderate vs. mild Severe vs. mild

Originala 1.3 (1.0, 1.7) 1.1 (0.7, 1.7) 2.5 (1.6, 3.9)
Exclude clinicalb 1.4 (1.0, 1.8) 1.0 (0.6, 1.6) 2.4 (1.5, 3.7)
North Americac 0.8 (0.5, 1.2) 1.5 (0.7, 3.2) 2.9 (1.1, 7.2)
Exclude negative w/in 2 weeksd 1.1 (0.7, 1.7)
Shorter cutoe 1.3 (1.0, 1.7) 1.1 (0.7, 1.7) 2.5 (1.6, 3.9)
Longer cutof 1.3 (1.0, 1.7) 1.1 (0.7, 1.6) 2.6 (1.7, 4.0)

a Analysis as in the main text
b Exclude participants with a clinical diagnosis of COVID-19 by no positive test
c Include only participants from North America
d Exclude participants who tested negative within two weeks prior to delivery
e Restrict sample to those with a last menstrual period within 42 (rather than 45) weeks prior
f Restrict sample to those with a last menstrual period within 48 (rather than 45) weeks prior
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Figure A.3: Results from varying the risk window (and corresponding size of reference window) in the

case-time-control analysis
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Figure A.4: Cumulative deliveries across gestation, estimated in various sensitivity analyses (COVID-positive vs. negative): a) Estimating risks separately

for mild and moderate severity groups; b) Finer modeling of the discrete-time hazard of delivery; c) Excluding participants who joined after completion of

pregnancy; d) Excluding participants who tested negative within two weeks before delivery (i.e., routine delivery testing).
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Figure A.5: Cumulative deliveries across gestation, estimated in various sensitivity analyses (COVID-19 severity): a) Estimating risks separately for

mild and moderate severity groups; b) Finer modeling of the discrete-time hazard of delivery; c) Excluding participants who joined after completion of

pregnancy; d) Excluding participants who tested negative within two weeks before delivery (i.e., routine delivery testing).
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B

Appendix to Chapter 2

Table B.1: Number of person-months and deaths contributing to inverse-probability weighted estimates for

all-cause mortality under a range of treatment regimes, dened by the threshold of PSA doubling time in days

at which treatment was initiated.

Threshold Person-months Deaths

0 64,247 145
60 57,784 134
120 49,088 132
180 41,271 106
240 33,786 85
300 28,953 72
360 25,205 64
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Table B.2: Description of the models used in the two estimation methods. The value of the time-varying covariates used to t the models was the most

recent value, with the expection of PSA, for which the highest value of the past 3 months was used, and PSADT, for which the lowest value of the past 3

months was used.

Variable Baseline covariates Time-varying covariates Model type Subset

Parametric g-formula
any clinic
visit

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

symptoms, any progression, length of
progression, on ADT, duration on ADT,
interaction term between ADT indicator
and duration, duration not on ADT, PSA,
PSADT, high PSADT, time since baseline
(natural cubic spline with knots at 12, 29,
56), time since last visit (natural cubic
spline with knots at 2 and 5 months)

logistic all observations

PSA year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

symptoms, any progression, length of
progression, PSA, on ADT, duration on
ADT, interaction term between ADT
indicator and duration, duration not on
ADT, PSADT, high PSADT

logistic for PSA
= 0; linear in
log(PSA)

all visits (subset
to those with
non-0 PSA for
linear model)

PSADT PSA (2 most recent measurements), time
between 2 most recent PSA
measurements

direct
calculation

all visits

any
symptoms

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

symptoms, any progression, length of
progression, PSA, on ADT, duration on
ADT, interaction term between ADT
indicator and duration, duration not on
ADT, PSADT, high PSADT

logistic all visits
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disease
progression

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

symptoms, PSA, on ADT, duration on
ADT, interaction term between ADT
indicator and duration, duration not on
ADT, PSADT, high PSADT

logistic all observations
that have not
yet
experienced
disease
progression

ADT
initiation

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

PSA, symptoms, any progression, length
of progression, PSADT, high PSADT,
time since baseline

logistic all observations
that have not
yet initiated
ADT

ADT discon-
tinuation

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

PSA, symptoms, any progression, length
of progression, PSADT, high PSADT,
duration of ADT

logistic all observations
that are
currently on
ADT

death year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

time since last visit, PSA, symptoms, any
progression, length of progression, on
ADT, duration on ADT, interaction term
between ADT indicator and duration,
PSADT, high PSADT, duration not on
ADT, time since baseline (natural cubic
spline with knots at 12, 29, 56)

logistic all observations

Inverse probability weighting
ADT
initiation

year of relapse, time to relapse,
diagnostic risk category,
original treatment, PSA at
relapse, age at diagnosis,
comordidities, PSADT at
relapse, PSA at relapse

PSA, months since visit, symptoms, any
progression, length of progression, visit
this month, PSADT, high PSADT, time
since baseline

logistic all observations
that have not
yet started
ADT
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ADT
re-initiation

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comordidities,
PSADT at relapse, PSA at
relapse

PSA, symptoms, any progression,
duration of progression, visit this month,
PSADT, high PSADT, duration of ADT,
duration of no ADT

logistic all observations
that have
discontinued
ADT

loss to
follow-up

year of relapse, time to relapse,
diagnostic risk category,
original treatment, age at
diagnosis, comordidities,
PSADT at relapse, PSA at
relapse

PSA, months since visit, any
progression, length of progression, visit
this month, PSADT, high PSADT,
duration of ADT, duration of no ADT

logistic all observations
after 24
months

death ’assigned’ PSADT threshold
(natural cubic spline with knots
at 90, 180, 270), year of relapse,
time to relapse, diagnostic risk
category, original treatment,
age at diagnosis, comorbidities,
PSADT at relapse, PSA at
relapse

time since baseline (natural cubic spline
with knots at 20, 36, 69), interaction
terms with threshold

logistic all observations,
weighted and
possibly
replicated85



Figure B.1: Risk dierences for 5- and 10-year all-cause mortality across treatment strategies dened by PSADT

threshold, compared to the reference threshold of 0 (equivalent to never starting treatment based on PSADT).

Error bars depict pointwise 95 percent condence intervals estimated via non-parametric bootstrap, with 1000

replicates.
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Table B.3: Estimated risk dierences for 5- and 10-year all-cause mortality comparing treatment regimes

dened by a threshold of PSA doubling time in days at which to initiate treatment, compared to a reference

threshold of 0 days. The primary analyses are presented along with an analysis in which treatment is assigned

during the grace period according to the observed probability of treatment, instead of uniformly across the

grace period as in the main analysis.

Threshold IP weighting
(primary analyis)

IP weighting
(according to
observed
treatment
probabilities)

G-formula
(primary analyis)

G-formula
(according to
observed
treatment
probabilities)

5-year all-cause mortality

0 ref. ref. ref. ref.

60 0.01 (-0.13, 0.07) -0.01 -0.02 (-0.03, -0.01) -0.02

120 0.02 (-0.17, 0.11) -0.01 -0.03 (-0.04, -0.01) -0.02

180 0.02 (-0.19, 0.14) -0.01 -0.03 (-0.04, -0.01) -0.02

240 0.02 (-0.17, 0.15) -0.02 -0.03 (-0.05, -0.01) -0.03

300 0.01 (-0.16, 0.17) -0.03 -0.03 (-0.05, -0.01) -0.03

360 0.01 (-0.15, 0.18) -0.03 -0.03 (-0.05, -0.01) -0.03

10-year all-cause mortality

0 ref. ref. ref. ref.

60 0.00 (-0.15, 0.11) -0.02 -0.02 (-0.04, 0.02) -0.02

120 0.01 (-0.23, 0.28) -0.02 -0.02 (-0.05, 0.04) -0.03

180 0.02 (-0.22, 0.37) -0.02 -0.02 (-0.05, 0.04) -0.03

240 0.02 (-0.21, 0.40) -0.02 -0.02 (-0.05, 0.04) -0.03

300 0.02 (-0.23, 0.38) -0.03 -0.03 (-0.05, 0.04) -0.03

360 0.02 (-0.31, 0.44) -0.03 -0.02 (-0.05, 0.04) -0.03
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Table B.4: Estimated risk dierences for 5- and 10-year all-cause mortality comparing treatment regimes

dened by a threshold of average PSA doubling time in days at which to initiate treatment, compared to a

reference threshold of 0 days.

Threshold Unadjusted model IP weighting G-formula

5-year all-cause mortality

0 ref. ref. ref.

300 0.00 -0.01 -0.02

600 0.00 -0.03 -0.03

900 -0.01 -0.05 -0.03

1200 -0.01 -0.05 -0.03

1500 -0.01 -0.05 -0.03

1800 -0.01 -0.05 -0.03

10-year all-cause mortality

0 ref. ref. ref.

300 0.00 0.00 -0.01

600 -0.01 -0.03 -0.02

900 -0.01 -0.06 -0.02

1200 0.00 -0.08 -0.02

1500 0.03 -0.08 -0.03

1800 0.07 -0.07 -0.03
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C

Appendix to Chapter 3

C.1 A bound for outcome misclassification, selection bias,
and unmeasured confounding

Result 1

Let 𝐴 denote a binary exposure of interest, 𝑌 a binary outcome and 𝑌 ∗ the misclassied version,

and 𝐶 measured covariates. Additionally let 𝑆 be a binary indicator of selection into a study, so

that we can collect data only on the subset of the population for which 𝑆 = 1. Finally, assume that

there exist𝑈𝑠 and𝑈𝑐 such that 𝑌⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 , but that it is not necessarily true

that 𝑌⊥⊥ 𝑆 | 𝐴,𝐶 or 𝑌𝑎⊥⊥𝐴 | 𝐶 .

We can estimate a confounded risk ratio observed in the selected population, subject to

(potentially dierential) outcome misclassication, RRobs
𝐴𝑌

, but our inferential goal is a causal risk

ratio for the true outcome in the entire population, RRtrue
𝐴𝑌

:

RRobs
𝐴𝑌 =

Pr (𝑌 ∗ = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

RRtrue
𝐴𝑌 =

Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐)

We have from VanderWeele & Li96 that, for RRtrue
𝐴𝑌

≥ 1,

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐) (C.1)
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for

BF𝑚 = RR𝐴𝑌 ∗ |𝑦,𝑆=1 = max
𝑦

Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑆 = 1, 𝑐) . (C.2)

Then, since we are assuming that 𝑌⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 , from Smith & VanderWeele95 we have that

Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐) ≤ BF𝑠 ×

Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐) (C.3)

for

BF𝑠 =
RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1
×

RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0
RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1

where

RR𝑈𝑠𝑌 |𝐴=𝑎 =
max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢) for 𝑎 = 0, 1

RR𝑆𝑈𝑠 |𝐴=1 = max
𝑢

Pr (𝑈𝑠 = 𝑢 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑈𝑠 = 𝑢 | 𝐴 = 1, 𝑆 = 0, 𝑐)

RR𝑆𝑈𝑠 |𝐴=0 = max
𝑢

Pr (𝑈𝑠 = 𝑢 | 𝐴 = 0, 𝑆 = 0, 𝑐)
Pr (𝑈𝑠 = 𝑢 | 𝐴 = 0, 𝑆 = 1, 𝑐) . (C.4)

Finally, since we are assuming that 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 from Ding & VanderWeele94 we have

Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐) ≤ BF𝑐 ×

Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐) (C.5)

for

BF𝑐 =
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1

(C.6)

where

RR𝐴𝑈𝑐
= max

𝑢

Pr (𝑈𝑐 = 𝑢 | 𝐴 = 1, 𝑐)
Pr (𝑈𝑐 = 𝑢 | 𝐴 = 0, 𝑐)

RR𝑈𝑐𝑌 = max
𝑎

max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢) .
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Putting together expressions (C.1), (C.3), and (C.5), we have Result 1:

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

≤ BF𝑚 × BF𝑠 ×
Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐)

≤ BF𝑚 × BF𝑠 × BF𝑐 ×
Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐)

= BF𝑚 × BF𝑠 × BF𝑐 × RRtrue
𝐴𝑌 . (C.7)

An alternative decomposition

Now assume that there exist𝑈𝑠 and𝑈𝑐 such that 𝑌 ∗⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 . This may be

the case if, for example, selection into the study is based on a factor related to the (mis)measured

outcome, not the true outcome.

Then we can bound the bias with the same nal expression, but some of the parameters within

the bias factors are dened slightly dierently.

The possible magnitude of selection bias can be dened in terms of the misclassied outcome,

so that

BF𝑠 =
RR𝑈𝑠𝑌

∗ |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1
RR𝑈𝑠𝑌

∗ |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1
×

RR𝑈𝑠𝑌
∗ |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0

RR𝑈𝑠𝑌
∗ |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1

where

RR𝑈𝑠𝑌
∗ |𝐴=𝑎 =

max𝑢 Pr (𝑌 ∗ = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢)
min𝑢 Pr (𝑌 ∗ = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢) for 𝑎 = 0, 1

and RR𝑆𝑈𝑠 |𝐴=1 and RR𝑆𝑈𝑠 |𝐴=0 are dened as in (C.4) above. Then, the measurement error correction

applies to the entire population, so that

BF𝑚 = RR𝐴𝑌 ∗ |𝑦 = max
𝑦

Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑐) .

Expression (C.7) now holds with the newly dened BF𝑠 and BF𝑚 .
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C.2 A bound for exposure misclassification, selection bias,
and unmeasured confounding

Unlike the bound for outcome misclassication, the bound for exposure misclassication from

VanderWeele & Li96 applies to the odds ratio, not the risk ratio, and the sensitivity parameters are

also not risk ratios. That is,
Pr(𝑌=1|𝐴∗=1,𝑐)
Pr(𝑌=0|𝐴∗=1,𝑐)
Pr(𝑌=1|𝐴∗=0,𝑐)
Pr(𝑌=0|𝐴∗=0,𝑐)

≤ BF′𝑚 ×
Pr(𝑌=1|𝐴=1,𝑐)
Pr(𝑌=0|𝐴=1,𝑐)
Pr(𝑌=1|𝐴=0,𝑐)
Pr(𝑌=0|𝐴=0,𝑐)

(C.8)

for

BF′𝑚 = OR𝑌𝐴∗ |𝑎 = max ©«
𝑠 ′1

1−𝑠 ′1
𝑠 ′0

1−𝑠 ′0

,

𝑓 ′1
1−𝑓 ′1
𝑓 ′0

1−𝑓 ′0

,

𝑓 ′1
𝑓 ′0

1−𝑠 ′1
1−𝑠 ′0

,

𝑠 ′1
𝑠 ′0

1−𝑓 ′1
1−𝑓 ′0

ª®¬ (C.9)

where 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑐) and 𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑐). Applying this

bound after factoring out selection bias, we would nd that we are left with

RRobs
𝐴𝑌 ≤ BF′𝑚 × BF𝑠 × BF𝑐 × RRtrue

𝐴𝑌 × Pr (𝑌 = 0 | 𝐴 = 0, 𝑐)
Pr (𝑌 = 0 | 𝐴 = 1, 𝑐) ×

Pr (𝑌 = 0 | 𝐴∗ = 1, 𝑐)
Pr (𝑌 = 0 | 𝐴∗ = 0, 𝑐)

for some BF′𝑚 , BF𝑠 , and BF𝑐 , which is not as useful for sensitivity analysis. However, if the outcome

is suciently rare that Pr (𝑌 = 0 | ·) ≈ 1 in all strata, a simpler bound holds approximately, as we

show next.

Again we can dene the parameters in the bound in two ways by considering two sets of

assumptions.

Result 2

If there exist𝑈𝑠 and𝑈𝑐 such that 𝑌⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 , and if Pr (𝑌 = 0 | ·) ≈ 1, then

we have Result 2:

RRobs′
𝐴𝑌 =

Pr (𝑌 = 1 | 𝐴∗ = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴∗ = 0, 𝑆 = 1, 𝑐)

. BF′𝑚 × BF𝑠 × BF𝑐 × RRtrue
𝐴𝑌
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for BF′𝑚 = OR𝑌𝐴∗ |𝑎,𝑆=1 equivalent to the expression (C.9), butwith 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑆 = 1, 𝑐)

and 𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑆 = 1, 𝑐); BF𝑠 as dened in (C.4); and BF𝑐 as dened in (C.6).

An alternative decomposition

Alternatively, if 𝑌⊥⊥ 𝑆 | 𝐴∗,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 , then the bound holds approximately with

BF𝑠 =
RR𝑈𝑠𝑌 |𝐴∗=1 × RR𝑆𝑈𝑠 |𝐴∗=1

RR𝑈𝑠𝑌 |𝐴∗=1 + RR𝑆𝑈𝑠 |𝐴∗=1 − 1
×

RR𝑈𝑠𝑌 |𝐴∗=0 × RR𝑆𝑈𝑠 |𝐴∗=0

RR𝑈𝑠𝑌 |𝐴∗=0 + RR𝑆𝑈𝑠 |𝐴∗=0 − 1

where RR𝑈𝑠𝑌 |𝐴∗=𝑎 and RR𝑆𝑈𝑠 |𝐴∗=0 are dened as above, with all 𝐴 replaced with 𝐴∗ and 𝑌 ∗ replaced

with 𝑌 , and with BF′𝑚 as originally dened in expression (C.9).

Interpretation of the exposure misclassification parameters

While all of the sensitivity parameters we have considered thus far are risk ratios, we have

seen that those making up the bound for exposure misclassication are not. If, however, the

misclassied exposure is suciently rare that Pr (𝐴∗ = 0 | ·) ≈ 1, then we can interpret the

sensitivity parameters as risk ratios:

BF′𝑚 = RR𝑌𝐴∗ |𝑎 = max𝑎
(
Pr (𝐴∗ = 1 | 𝑌 = 1, 𝐴 = 𝑎, 𝑐)
Pr (𝐴∗ = 1 | 𝑌 = 0, 𝐴 = 𝑎, 𝑐)

)
or

BF′𝑚 = RR𝑌𝐴∗ |𝑎,𝑆=1 = max𝑎
(
Pr (𝐴∗ = 1 | 𝑌 = 1, 𝐴 = 𝑎, 𝑆 = 1, 𝑐)
Pr (𝐴∗ = 1 | 𝑌 = 0, 𝐴 = 𝑎, 𝑆 = 1, 𝑐)

)
.

Alternatively, if the exposure is not particularly rare, we can interpret the sensitivity parameters

as squares of the RR equivalents, using the square-root approximation of the odds ratio.120

C.3 Inference in the selected population
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Result 3 (Under outcome misclassification)

It may be that our target of inference is the selected population only, so that

RRtrue
𝐴𝑌 |𝑆=1 =

Pr (𝑌1 = 1 | 𝑆 = 1, 𝑐)
Pr (𝑌0 = 1 | 𝑆 = 1, 𝑐) .

In this case we need that assumption 𝑌𝑎⊥⊥𝐴 | 𝑆 = 1,𝐶,𝑈𝑐,𝑈𝑠 : we must simultaneously consider

both the factor(s) creating selection bias and the factor(s) creating confounding (which may be one

and the same). Let𝑈𝑠𝑐 denote the vector (𝑈𝑠,𝑈𝑐). Then after factoring out the misclassication

bias, we have Result 3:

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

≤ BF𝑚 × BF𝑠𝑐 ×
Pr (𝑌1 = 1 | 𝑆 = 1, 𝑐)
Pr (𝑌0 = 1 | 𝑆 = 1, 𝑐)

= BF𝑚 × BF𝑠𝑐 × RRtrue
𝐴𝑌 |𝑆=1 (C.10)

for

BF𝑠𝑐 =
RR𝐴𝑈𝑠𝑐

× RR𝑈𝑠𝑐𝑌

RR𝐴𝑈𝑠𝑐
+ RR𝑈𝑠𝑐𝑌 − 1

where

RR𝐴𝑈𝑠𝑐
= max

𝑢

Pr (𝑈𝑠𝑐 = 𝑢 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑈𝑠𝑐 = 𝑢 | 𝐴 = 0, 𝑆 = 1, 𝑐)

RR𝑈𝑠𝑐𝑌 = max
𝑎

max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑆 = 1, 𝑐,𝑈𝑠𝑐 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑆 = 1, 𝑐,𝑈𝑠𝑐 = 𝑢)

and BF𝑚 is dened as in (C.2).

Under exposure misclassification

Again we consider the bias due to selection and unmeasured confounding jointly. The bound

in expression (C.10) holds with BF′𝑚 constructed with 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 1, 𝑆 = 1, 𝑐) and

𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦,𝐴 = 0, 𝑆 = 1, 𝑐).
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C.4 The multi-bias E-value

The bounds in Results 1, 2, and 3 allow researchers and consumers of research to choose values for

bias parameters and investigate their possible eects on an observed risk ratio. Target-adjusted

sensitivity analysis, on the other hand, quanties the strength of bias necessary to shift an

observation to another value, often the null value, though others can be used.121 The E-value

for unmeasured confounding is an example of this approach.102 We can calculate an equivalent

value for a combination of biases using the bounds in this article. The E-value for unmeasured

confounding refers to a value that can be shown to be sucient to explain away an observed

estimate and that jointly minimizes themaximum of the two sensitivity parameters for unmeasured

confounding.102 Similarly, the multi-bias E-value describes the minimum value that all of the

sensitivity parameters for each of the biases would have to take on for a given observed risk ratio

to be compatible with a truly null risk ratio. Since the overall bias is monotone increasing in

the individual bias parameters, it follows that if any one of the bias parameters is less than the

multi-bias E-value, then at least one other parameter would have to be greater than the multi-bias

E-value in order to completely explain a result.

Recall that under non-dierential misclassication of the exposure, the BF𝑚 factor in the bound

is not a risk ratio. If the misclassied exposure is rare, then that parameter can be interpreted as

an approximate risk ratio; otherwise, an approximate square root transformation for the odds

ratio can be applied so as to approximate the risk ratio.96 In this way all the parameters that the

multi-bias E-value pertains to are on the (approximate) risk ratio scale.

Figure 2 shows the size of the multiple-bias E-value for various combinations of biases and

across a range of observed risk ratios. In general, this demonstrates that when there are multiple

forms of bias, very little of each type could be sucient to produce a risk ratio that is within

the range we generally see in epidemiologic studies. For example, when the null is true, it is

possible to observe a risk ratio of 4 if each of the outcome misclassication (RR𝐴𝑌 ∗ |𝑦,𝑆=1), selec-
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tion bias (RR𝑈𝑠𝑌 |𝐴=1, RR𝑈𝑠𝑌 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=1, RR𝑆𝑈𝑠 |𝐴=0), and unmeasured confounding (RR𝑈𝑐𝑌 , RR𝐴𝑈𝑐
)

parameters is approximately 1.89.

Of course, it is unlikely that each of these sensitivity analysis parameters would be equal to

the others, and equal to 1.89. The bounds in this article can be used to assess the bias with a more

realistic set of parameters. However, comparing multiple-bias E-values for various combinations

of biases may be useful when planning studies to assess where resources should be invested to

avoid certain biases, or to assess where a more in-depth bias analysis would be most useful.

Unfortunately, we know of no closed-form solution for this value when we are faced with

all three types of bias, but it is easily solved numerically. The expressions to be solved are given

in the nal column of Table 1. To calculate the analogous multi-bias E-value needed to shift the

observed RRobs
𝐴𝑌

to some risk ratio, RRtrue
𝐴𝑌

, other than the null, one can simply replace RRobs
𝐴𝑌

in the

each formula with RRobs
𝐴𝑌

/RRtrue
𝐴𝑌

. Also, each formula presupposes that RRobs
𝐴𝑌

>= 1; for apparently

protective exposures, the inverse should be taken rst.

We will demonstrate interpretation of the multiple bias E-value with respect to our examples,

and then briey describe an R package that can be used to implement the results.

Examples

Recall from the main text that the study of HIV infection in children found RRobs
𝐴𝑌

= 6.75,100

which we determined was possibly aected by selection bias and unmeasured confounding. The

multi-bias E-value for that study, given the assumptions about bias we have made, is 4.64. This

tells us that RR𝑈𝑠𝑌 |𝐴=1 = RR𝑆𝑈𝑠 |𝐴=1 = RR𝐴𝑈𝑐
= RR𝑈𝑐𝑌 =≥ 4.64 could suce to completely explain

the observed result, but weaker combined bias would not. If, for example, selection bias were

indeed weaker, the strength of the unmeasured confounding parameters would have to be stronger

than 4.64 for the observation to be compatible with a truly null eect. Repeating the calculation

with the lower limit of the condence interval, we obtain a multi-bias E-value of 2.73. If all of the

parameters were this large, it is possible that the condence interval would include the null.
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The estimate from the vitamins-leukemia study was RRobs
𝐴∗𝑌 = 0.51.101 After taking the inverse

so thatRRobs
𝐴∗𝑌 = 1/0.51 = 1.96, we nd that the multi-bias E-value for exposure misclassication

and unmeasured confounding is 1.35. In order to interpret that number consistently across biases,

the multi-bias E-value we have calculated pertains to RR𝐴𝑈𝑐
, RR𝑈𝑐𝑌 , and RR𝑌𝐴∗ |𝑎 , the latter being

the square-root approximation of the OR𝑌𝐴∗ |𝑎 term in the bound for exposure misclassication.96

This allows us to interpret 1.35 as the minimum strength on the risk ratio scale that an unmeasured

confounder, or set of confounders, would have to have on the outcome, that would have to relate

vitamin use to the confounder, and that the false positive probability or sensitivity for vitamin use

would have to be increase by, in order for these biases to explain the entire observed risk ratio.

Again, this is simply a heuristic, not something we would expect to be the case; for example, we

might expect weaker misclassication but stronger confounding. For the limit of the condence

interval closest to the null, 0.89, if we take inverses, we obtain 1/0.89 = 1.12 and the multi-bias

E-value for this is only 1.06, indicating that whether the true risk ratio is smaller than or greater

than 1 is indeed sensitive to relatively small amounts of bias.

Derivation

To form a multiple bias E-value,102 we can set all of the parameters that make up the terms in the

bounds equal to each other, then solve for that value to see what magnitude of bias would result

in an RRobs
𝐴𝑌

of at least the value observed, if RRtrue
𝐴𝑌

= 1.
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For example, for the bound for outcome misclassication, general selection bias, and unmea-

sured confounding:

RRobs
𝐴𝑌 ≤ maxRR𝐴𝑌 ∗ |𝑦,𝑆=1 ×

RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1
RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1

×

RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0
RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1

×
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1

× 1

= 𝑥 × 𝑥2

2𝑥 − 1
× 𝑥2

2𝑥 − 1
× 𝑥2

2𝑥 − 1

=
𝑥7

(2𝑥 − 1)3 (C.11)

for 𝑥 = RR𝐴𝑌 ∗ |𝑦,𝑆=1 = RR𝑈𝑠𝑌 |𝐴=1 = RR𝑆𝑈𝑠 |𝐴=1 = RR𝑈𝑠𝑌 |𝐴=0 = RR𝑆𝑈𝑠 |𝐴=0 = RR𝐴𝑈𝑐
= RR𝑈𝑐𝑌 . To

our knowledge, this polynomial has no closed-form solution. However, we can easily solve it

numerically.

For example, if RRobs
𝐴𝑌

= 3, then 𝑥 = 1.71, meaning that if each of the parameters were at least

1.71, the observed risk ratio could be consistent with a truly null causal risk ratio. If any of the

parameters were smaller than 1.71, others would have to be larger if the causal risk ratio were

truly null.

We can solve the inequality for any combination of parameters that make up a particular bound

in a given situation (e.g., for outcome misclassication and selection bias only, or for exposure

misclassication with a rare outcome and unmeasured confounding). When considering exposure

misclassication, to calculate a multiple bias E-value, we rst must conrm that the outcome is

rare. Then, if the misclassied exposure is rare, we can solve equation (C.11) and interpret it with

respect to the appropriate parameters; if the exposure is not rare, we can solve

RRobs
𝐴𝑌 . RR2

𝑌𝐴∗ |𝑎,𝑆=1 ×
RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1
×

RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0
RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1

×
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1

× 1

= 𝑥2 × 𝑥2

2𝑥 − 1
× 𝑥2

2𝑥 − 1
× 𝑥2

2𝑥 − 1

=
𝑥8

(2𝑥 − 1)3

and interpret with respect to the same parameters.
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C.5 Implementation in R

We can use new functions from the R package EValue107 to either calculate the appropriate

multiple bias E-value or to calculate a bound for the bias, given proposed parameters. The

primary new functions in the package, multi_bound() and multi_evalue(), accept a set of biases

(out of confounding(), selection(), and misclassification(), which take various arguments

describing the bias in more detail). The function multi_bias() is used to declare those biases. The

multi_bound() function requires values for the parameters making up the bound for the biases

in question. The multi_evalue() function requires just a value for the observed risk ratio, and

prints a message to the user about the sensitivity parameters it refers to.

We will demonstrate the new package functionality by working through the examples in the

main text. We will then show how the new functions can be used to recreate examples from earlier

literature as well.

library(EValue)

Examples from the main text

The multi_bias() function takes as arguments one or more of the three bias functions, confound-

ing(), selection(), and misclassification(). They should be listed in the order in which they

occur in the data (i.e., does the measurement happen in the sample, or is the sample selected based

on mismeasured exposure or outcome values?). Each of selection() and misclassification()

take additional arguments depending on the assumptions and simplications of a given scenario.

In the HIV example, we were interested in the composite bias due to confounding and selection.

We were willing to make the assumption that the outcome is more likely in the selected portion of

both exposure groups, so we include the argument "increased risk". (The "general" argument

is in contrast to "selected", the latter meaning that we are only interested in inference in the

selected population. Since "general" is the default, we could leave it out.)
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HIV_biases <- multi_bias(confounding(),

selection("general", "increased risk"))

Printing the biases prints out the arguments that are required for the multi_bound() function

for easy copying and pasting into that function.

HIV_biases

multi_bound(biases = HIV_biases,

RRAUc = 2.3, RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

[1] 2.269737

Because the labeling of the arguments is not necessarily intuitive, we might want to conrm

which refers to which parameter. We can use the summary() function on a object created with the

multi_bias() function to print more information about the biases.

summary(HIV_biases)

bias output argument

1 confounding RR_AUc RRAUc

2 confounding RR_UcY RRUcY

3 selection RR_UsY|A=1 RRUsYA1

4 selection RR_SUs|A=1 RRSUsA1

For easy copying and pasting of the notation we used in this appendix and in the main text, the

argument latex = TRUE can be used in the summary function to print out an additional column

with the parameters in our notation.

To calculate a multi-bias E-value, we must provide the observed eect estimate along with the

set of biases. There are two options for doing so. The rst is to declare the eect estimate with

one of RR(), OR(), or HR(), depending on whether it is a risk, odds, or hazard ratio.

multi_evalue(biases = HIV_biases,

est = OR(6.75, rare = TRUE),

lo = 2.79, hi = 16.31)
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point lower upper

RR 6.750000 2.790000 16.31

Multi-bias E-values 4.635703 2.728474 NA

The lower and upper bound of the condence interval are assumed to be on the same scale.

Next we will look at the vitamins-leukemia example from the text. The misclassification()

bias requires one of either "outcome" or "exposure"; if exposure misclassication is of interest,

the user is also required to specify whether the outcome and/or exposure are suciently rare

to use a risk ratio approximation for an odds ratio (irrespective of whether the eect estimate is

actually on the odds ratio scale).

leuk_biases <- multi_bias(confounding(),

misclassification("exposure",

rare_outcome = TRUE,

rare_exposure = FALSE))

leuk_biases

Again we can calculate the bound and multi-bias E-value as in the text.

multi_bound(biases = leuk_biases, RRAUc = 2, RRUcY = 1.22, ORYAa = 1.59)

[1] 1.747568

multi_evalue(biases = leuk_biases,

est = OR(0.51, rare = TRUE),

lo = 0.3, hi = 0.89)

point lower upper

RR 0.510000 0.3 0.890000

Multi-bias E-values 1.351985 NA 1.058404

We can easily demonstrate that the E-value is the same whether or not the eect estimate is

inverted if the exposure is apparently protective. Also, if we don’t want the message about the

parameters to print, we can use the argument verbose = FALSE.
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multi_evalue(biases = leuk_biases,

est = OR(1/0.51, rare = TRUE),

hi = 1/0.3, lo = 1/0.89,

verbose = FALSE)

point lower upper

RR 1.960784 1.123596 3.333333

Multi-bias E-values 1.351985 1.058404 NA

Finally, we presented a multi-bias E-value for all three biases. We can use the summary()

function to just print the single value, instead of the matrix of the estimates and condence limits

and E-values for both.

summary(multi_evalue(biases = multi_bias(confounding(),

selection("general"),

misclassification("outcome")),

est = RR(4)))

[1] 1.888478

Extensions not appearing in the main text

We may want to vary the magnitude of the parameters used to calculate the bounds. We’ll use the

biases from the HIV example to demonstrate.

# original bound

multi_bound(biases = HIV_biases, RRAUc = 2, RRUcY = 2.5,

RRUsYA1 = 3, RRSUsA1 = 2)

[1] 2.142857

# vary RRAUc from 1.25 to 3

sapply(seq(1.25, 3, by = .25), function(RRAUc) {

multi_bound(biases = HIV_biases, RRAUc = RRAUc,
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RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

})

[1] 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000

# vary RRAUc and RRUcY

param_vals <- seq(1.25, 3, by = .25)

params <- expand.grid(RRAUc = param_vals,

RRUcY = param_vals)

vals <- mapply(multi_bound,

RRAUc = params$RRAUc,

RRUcY = params$RRUcY,

MoreArgs = list(biases = HIV_biases,

RRUsYA1 = 3, RRSUsA1 = 2))

matrix(vals,

ncol = length(param_vals),

dimnames = list(param_vals, param_vals)

)

1.25 1.5 1.75 2 2.25 2.5 2.75 3

1.25 1.562500 1.607143 1.640625 1.666667 1.687500 1.704545 1.718750 1.730769

1.5 1.607143 1.687500 1.750000 1.800000 1.840909 1.875000 1.903846 1.928571

1.75 1.640625 1.750000 1.837500 1.909091 1.968750 2.019231 2.062500 2.100000

2 1.666667 1.800000 1.909091 2.000000 2.076923 2.142857 2.200000 2.250000

2.25 1.687500 1.840909 1.968750 2.076923 2.169643 2.250000 2.320312 2.382353

2.5 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000

2.75 1.718750 1.903846 2.062500 2.200000 2.320312 2.426471 2.520833 2.605263

3 1.730769 1.928571 2.100000 2.250000 2.382353 2.500000 2.605263 2.700000

Of course, all of the parameters in the bound could be varied, but summarizing the resulting

bounds in a simple table or gure becomes more dicult with more than two dimensions.

When calculating a multi-bias E-value, we may also think that the null is unlikely but wish

to consider how much bias could have shifted a dierent true value to the observed value. For
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example, in the HIV example, we could calculate a multi-bias E-value for a true risk ratio of 2

rather than the null value of 1:

multi_evalue(biases = HIV_biases,

est = OR(6.75, rare = TRUE),

lo = 2.79, hi = 16.31,

true = 2)

point lower upper

RR 6.750000 2.790000 16.31

Multi-bias E-values 3.077243 1.643623 NA

The multi-bias E-value for the point estimate, 3.08 is of course smaller than the “null” E-value

of 4.64, as less bias could have resulted in an OR of 6.75 if the true OR were 2 than would have

been necessary to shift it from 1.

The interpretation of the parameters diers depending on the ordering of the selection bias

and misclassication. We can see that the parameters expected in the multi_bound() function

and printed by the multi_evalue() function reect the ordering in which the biases are added to

multi_bias() (see output column).

# misclassification occurs in the selected group

summary(

multi_bias(selection("general"),

misclassification("exposure", rare_outcome = TRUE))

)

bias output argument

1 selection RR_UsY|A=1 RRUsYA1

2 selection RR_SUs|A=1 RRSUsA1

3 selection RR_UsY|A=0 RRUsYA0

4 selection RR_SUs|A=0 RRSUsA0

5 exposure misclassification OR_YA*|a,S ORYAaS
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# selection is of misclassified individuals

summary(

multi_bias(misclassification("exposure", rare_outcome = TRUE),

selection("general"))

)

bias output argument

1 selection RR_UsY|A*=0 RRUsYA0

2 selection RR_SUs|A*=1 RRSUsA1

3 selection RR_UsY|A*=1 RRUsYA1

4 selection RR_SUs|A*=1 RRSUsA1

5 exposure misclassification OR_YA*|a ORYAa

When selection bias and confounding are both of interest, but restricting inference to the

selected population only is desired, the parameters are shared by the two biases:

summary(

multi_bias(confounding(),

selection("selected"),

misclassification("exposure", rare_outcome = TRUE))

)

bias output argument

1 confounding and selection RR_AUsc|S RRAUscS

2 confounding and selection RR_UscY|S RRUscYS

3 exposure misclassification OR_YA*|a,S ORYAaS

Finally, we can see the expected relationship between the multi-bias bound and the multi-bias

E-value.

biases <- multi_bias(confounding(),

selection("general", "decreased risk"),

misclassification("outcome"))

# calculate bound with those parameters all equal to 2

multi_bound(biases, RRAUc = 2, RRUcY = 2, RRUsYA0 = 2, RRSUsA0 = 2, RRAYyS = 2)
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[1] 3.555556

# get multi-bias e-value for that value; should be ~2

summary(multi_evalue(biases, est = RR(3.555556)))

[1] 1.999997

Examples from earlier literature

The multi-bias bound and E-value are generalizations of previously published results. To demon-

strate, we recreate here some examples from three articles introducing the bound and E-value

concept for confounding, selection bias, and dierential misclassication.

From Sensitivity Analysis without Assumptions, Ding & VanderWeele 201694

# example from page 370

biases_ex1 <- confounding()

# specifying parameters in bound

multi_bound(biases = biases_ex1, RRAUc = 2, RRUcY = 2)

[1] 1.333333

# Table 1, page 371

# consider all possible combinations for bound

param_vals <- c(1.3, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10)

params <- expand.grid(RRAUc = param_vals,

RRUcY = param_vals)

table1_vals <- mapply(multi_bound, RRAUc = params$RRAUc, RRUcY = params$RRUcY,

MoreArgs = list(biases = biases_ex1))

table1 <- matrix(table1_vals,

ncol = length(param_vals),

dimnames = list(param_vals, param_vals)

)

round(table1, 2)
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1.3 1.5 1.8 2 2.5 3 3.5 4 5 6 8 10

1.3 1.06 1.08 1.11 1.13 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.26

1.5 1.08 1.12 1.17 1.20 1.25 1.29 1.31 1.33 1.36 1.38 1.41 1.43

1.8 1.11 1.17 1.25 1.29 1.36 1.42 1.47 1.50 1.55 1.59 1.64 1.67

2 1.13 1.20 1.29 1.33 1.43 1.50 1.56 1.60 1.67 1.71 1.78 1.82

2.5 1.16 1.25 1.36 1.43 1.56 1.67 1.75 1.82 1.92 2.00 2.11 2.17

3 1.18 1.29 1.42 1.50 1.67 1.80 1.91 2.00 2.14 2.25 2.40 2.50

3.5 1.20 1.31 1.47 1.56 1.75 1.91 2.04 2.15 2.33 2.47 2.67 2.80

4 1.21 1.33 1.50 1.60 1.82 2.00 2.15 2.29 2.50 2.67 2.91 3.08

5 1.23 1.36 1.55 1.67 1.92 2.14 2.33 2.50 2.78 3.00 3.33 3.57

6 1.24 1.38 1.59 1.71 2.00 2.25 2.47 2.67 3.00 3.27 3.69 4.00

8 1.25 1.41 1.64 1.78 2.11 2.40 2.67 2.91 3.33 3.69 4.27 4.71

10 1.26 1.43 1.67 1.82 2.17 2.50 2.80 3.08 3.57 4.00 4.71 5.26

# reduce an observed RR of 2.5 to true value of 1.5, page 371

summary(multi_evalue(biases = confounding(), est = RR(2.5), true = 1.5))

[1] 2.720763

# smoking and lung cancer e-value, page 373

summary(multi_evalue(biases = confounding(), est = RR(10.73)))

[1] 20.94777

From Bounding bias due to selection, Smith & VanderWeele, 201995

biases_ex2 <- selection("general")

# result 1A example

multi_bound(biases = biases_ex2,

RRUsYA1 = 2, RRSUsA1 = 1.7, RRUsYA0 = 2, RRSUsA0 = 1.5)

[1] 1.511111
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# result 1B example

multi_evalue(biases = biases_ex2, est = OR(73.1, rare = TRUE), lo = 13.0)

point lower upper

RR 73.10000 13.000000 NA

Multi-bias E-values 16.58415 6.670587 NA

# result 4B example

summary(multi_evalue(biases = selection("general", "S = U", "increased risk"),

est = OR(5.2, rare = TRUE)))

[1] 5.2

# result 5B example

multi_evalue(biases = selection("selected"),

est = OR(1.5, rare = TRUE), lo = 1.22)

point lower upper

RR 1.500000 1.220000 NA

Multi-bias E-values 2.366025 1.738081 NA

From Simple Sensitivity Analysis for Differential Measurement Error, VanderWeele & Li
201996

biases_ex3 <- misclassification("exposure",

rare_outcome = TRUE, rare_exposure = TRUE)

multi_evalue(biases = biases_ex3, est = OR(1.51, rare = TRUE), lo = 1.03)

point lower upper

RR 1.51 1.03 NA

Multi-bias E-values 1.51 1.03 NA
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Figure C.1: Multi-bias E-values for various combinations of biases and for observed risk ratios ranging from 1

to 7.
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Figure C.2: Additional directed acyclic graphs depicting multiple biases. These examples show how various

combinations of biases can be represented by directed acyclic graphs, and the independence assumptions that

are implied. a) This DAG depicts unmeasured confounding (through 𝑈𝑐 ), selection bias (through 𝑈𝑠 ), and

dierential misclassication of the outcome (due to the 𝐴 → 𝑌 ∗
edge). The assumptions 𝑌⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠

and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 are met. This implies that we can apply the outcome misclassication bound, then the

selection bias bound, then the unmeasured confounding bound for inference in the total population. b) This DAG
depicts unmeasured confounding (through𝑈𝑐 ), selection bias (through𝑈𝑠 ), and dierential misclassication

of the outcome (due to the 𝐴 → 𝑌 ∗
edge). The assumptions 𝑌 ∗⊥⊥ 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 are met.

This implies that we can apply the selection bias bound, then the outcome misclassication bound, then

the unmeasured confounding bound for inference in the total population. c) This DAG depicts unmeasured

confounding (through 𝑈𝑐 ), selection bias (through 𝑈𝑠 ), and dierential misclassication of the exposure (due

to the 𝑌 → 𝐴∗
edge). The assumption 𝑌𝑎⊥⊥𝐴 | 𝑆 = 1,𝐶,𝑈𝑠 ,𝑈𝑐 is met. This implies that we can apply the

the exposure misclassication bound, then the joint bound for selection bias and unmeasured confounding for

inference in the selected population. d) This DAG depicts unmeasured confounding (through𝑈𝑐 ), selection bias

(through 𝑈𝑠 ), and dierential misclassication of the exposure (due to the 𝑌 → 𝐴∗
edge). The assumptions

𝑌⊥⊥ 𝑆 | 𝐴∗,𝐶,𝑈𝑠 and 𝑌𝑎⊥⊥𝐴 | 𝐶,𝑈𝑐 are met. This implies that we can apply the selection bias bound, then the

exposure misclassication bound, then the unmeasured confounding bound for inference in the total population.
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