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Goal of epidemiology

*or other fields that attempt to observe and quantify natural
phenomena

Some truth
about a
population

Published/
shared
conclusions
about that
population
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Layers of distortion

Maclure & Schneeweiss, 2001 3



Layers of distortion

“The main lesson from our causal model of bias is that we
should question the adequacy of qualitative assessments of
bias in the Discussion sections of study reports. Even with
the help of user-friendly notation and illustrations, it is hard
to think about all these causes of bias simultaneously.”

Can’t rely on heuristics…

Maclure & Schneeweiss, 2001 4



Multiple-bias modelling

“Formulae can be
applied in
sequence to
correct multiple
biases… One can
imagine each
correction moving
a step from the
biased data back
to the unbiased
structure, as if
hypothetically
‘unwrapping the
truth from the
data package’.”
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Multiple-bias modelling

“multiple-bias modelling should become part of the core
training of anyone who will be entrusted with the analysis of
observational data”

“For a sensitivity analysis to be useful, it is surely necessary
that the assumptions which drive the different conclusions
are sufficiently transparent that they can be communicated.
Even to a statistical audience, Professor Greenland’s bias
models have taken several pages to explain….”

Greenland, 2005, discussion by Copas 6



Multiple–bias modelling
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https://dhaine.github.io/episensr/articles/
c_multiple_bias.html

https://dhaine.github.io/episensr/articles/c_multiple_bias.html


Current state of bias analysis?

• 238 quantitative bias analyses in epidemiologic literature 2006-2019

• 23% were an applied example in a methods paper or an entire paper
devoted to the bias analysis

• 87% only modelled one bias
8



Toward a ”simpler” sensitivity analysis
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Framework using bounds

bias parameters X⇒
observed risk ratio RR ≤ 𝑓 X × causal RR ⇒

causal RR ≥ 5observed RR
𝑓 X
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We can make statements of the form: “If the bias is of magnitude X,
the true causal RR must be at least as large as !!"#$%&$' ((

) X .”

The E-value inverts that statement and tells us what the minimum
X would have to be for the observed RR to be compatible with a
certain causal RR, usually the null.



Apply bounding framework to sequence 
of biases

https://amazon.com/Give-Gift-Frustration-Practical-Christmas/dp/B0779KYSLQ/

causal RR

observed RR

misclassification

selection

confounding
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Notation

𝐴: exposure (consider two values, 0 and 1)

𝑌: binary outcome

𝑌!: counterfactual outcome under exposure 𝐴 = 𝑎

𝐶: measured covariates – best attempt to avoid bias

What we want: causal risk ratio

RR!"true =
Pr 𝑌# = 1 ∣ 𝑐
Pr 𝑌$ = 1 ∣ 𝑐
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Notation

What we can estimate: observed risk ratio

𝑌∗: observed 𝑌

𝑆: indicator of selection into the study, such that we only
have data on the subset of the population for which 𝑆 = 1

RR!"obs =
Pr 𝑌∗ = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌∗ = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐
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What’s the problem?

𝑈#: unmeasured confounder(s)

𝑈$: unmeasured cause(s) of
selection
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Peeling off the layers

RR%&obs =
Pr 𝑌∗ = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌∗ = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

RR%&true =
Pr 𝑌' = 1 ∣ 𝑐
Pr 𝑌( = 1 ∣ 𝑐

Assume that there exist 𝑈$ and 𝑈# such that

𝑌∐𝑆 ∣ 𝐴, 𝐶, 𝑈$ and 𝑌!∐𝐴 ∣ 𝐶, 𝑈#,

but that it is not necessarily true that

𝑌∐𝑆 ∣ 𝐴, 𝐶 or 𝑌!∐𝐴 ∣ 𝐶
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Layer 1: outcome misclassification

RR!"obs ≤ max
#

Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐

×
Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

BF% = RR!"∗∣#,()* = max
#

Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐

RR!"obs ≤ BF%×
Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

misclassification bounding factor

the part of the package with no
misclassification
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Layers 2 and 3: selection and confounding

Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐 ≤ BF$×

Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑐

Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑐 ≤ BF#×

Pr 𝑌' = 1 ∣ 𝑐
Pr 𝑌( = 1 ∣ 𝑐

selection bias bounding factor the part of the package with no
selection bias

confounding bounding factor RR%&true
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In summary

RR%&obs ≤ BF)×
Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

≤ BF)×BF$×
Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑐

≤ BF)×BF$×BF#×
Pr 𝑌' = 1 ∣ 𝑐
Pr 𝑌( = 1 ∣ 𝑐

= BF)×BF$×BF#×RR%&true
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Proof?
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Layer 1: outcome misclassification

BF& = RR!"∗∣(,*+# = max
(

Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑌∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐

How much greater is the outcome sensitivity among the exposed
vs. the unexposed?

or

How much more likely are false-positives among the exposed vs.
the unexposed?

This is specific to the selected group.
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Layer 2: selection

BF, =
RR-""∣!+#×RR*-"∣!+#

RR-""∣!+# + RR*-"∣!+# − 1
×

RR-""∣!+$×RR*-"∣!+$
RR-""∣!+$ + RR*-"∣!+$ − 1

where

RR-""∣!+. =
max
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈, = 𝑢

min
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈, = 𝑢
for 𝑎 = 0,1

RR*-"∣!+# = max
/

Pr 𝑈, = 𝑢 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑈, = 𝑢 ∣ 𝐴 = 1, 𝑆 = 0, 𝑐

RR*-"∣!+$ = max
/

Pr 𝑈, = 𝑢 ∣ 𝐴 = 0, 𝑆 = 0, 𝑐
Pr 𝑈, = 𝑢 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

.
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Layer 2: selection

RR-""∣!+. =
max
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈, = 𝑢

min
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈, = 𝑢
for 𝑎 = 0,1

RR*-"∣!+# = max
/

Pr 𝑈, = 𝑢 ∣ 𝐴 = 1, 𝑆 = 1, 𝑐
Pr 𝑈, = 𝑢 ∣ 𝐴 = 1, 𝑆 = 0, 𝑐

RR*-"∣!+$ = max
/

Pr 𝑈, = 𝑢 ∣ 𝐴 = 0, 𝑆 = 0, 𝑐
Pr 𝑈, = 𝑢 ∣ 𝐴 = 0, 𝑆 = 1, 𝑐

To what extent is the outcome risk increased by the unmeasured
factor, within a single level of the exposure?
To what extent is some value of the unmeasured factor more
prevalent among the selected compared to the non-selected
group?

22



Layer 3: confounding

BF0 =
RR!-#×RR-#"

RR!-# + RR-#" − 1

where

RR!-# = max
/

Pr 𝑈0 = 𝑢 ∣ 𝐴 = 1, 𝑐
Pr 𝑈0 = 𝑢 ∣ 𝐴 = 0, 𝑐

RR-#" = max
.

max
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈0 = 𝑢

min
/

Pr 𝑌 = 1 ∣ 𝐴 = 𝑎, 𝑐, 𝑈0 = 𝑢

How much more prevalent is the confounder among the exposure
than the unexposed?
How much extra risk of the outcome does the confounder confer
among either the exposed or unexposed?
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Peeling off the layers in a different order?

Assume that there exist 𝑈$ and 𝑈# such that

𝑌∗∐𝑆 ∣ 𝐴, 𝐶, 𝑈$ and 𝑌!∐𝐴 ∣ 𝐶, 𝑈#.

This may be a more interpretable assumption if, for example,
selection into the study is based on a factor related to the
(mis)measured outcome, not the true outcome.

Recall the earlier assumptions were:

𝑌∐𝑆 ∣ 𝐴, 𝐶, 𝑈$ and 𝑌!∐𝐴 ∣ 𝐶, 𝑈#

24



Example: confounding and selection

Does infection to HIV in utero increase the risk of wasting?

Sample: Children of participants of a vitamin A
supplementation trial in Zimbabwe

Exposure: Exposed vs. unexposed to HIV in utero

Outcome: Weight-for-length Z-score of < -2 as toddlers

𝑅𝑅%&*+, = 6.75 (95% CI, 2.79, 16.31)

Omoni et al. 2017 25



Concern about confounding and selection 
bias

Observational study with respect to HIV infection, but no adjustment
for confounders

The authors did not adjust for parity or marital status, though they
report that primiparous women were less likely to have HIV, as were
married women

We may be concerned that children in single-parent households and
those with more siblings are at higher risk of wasting

Enrollment occurred at delivery, after possible HIV exposure and
transmission

The choice of whether to participate in the trial could have been
affected by HIV status as well as other factors (e.g., food insecurity),
leading to selection bias if those factors affect future child growth
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DAG
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Plausible parameters: confounding

The authors reported proportions of these characteristics
stratified by exposure, which can aid in coming up with a
reasonable value for 𝑅𝑅!-#.

Suppose we estimate that 3% of the women whose infants are
infected with HIV are multiparous and unmarried, but that this is
true of 7% of the women without HIV.

If this is the family situation with the largest disparity between exposure
groups, then we can specify 𝑅𝑅$% = 2.3.

Now suppose that children in these most precarious families
have 2.5 times the risk of wasting than those in the least
precarious, so that 𝑅𝑅-" = 2.5

28



Plausible parameters: selection

We assume that wasting is more likely in children of participants
than of non-participants, both among those with HIV as well as
those without

It turns out that if this is the case, we only need two of the
parameters:

Suppose that children of the most food-insecure mothers are
3 times as likely to have extremely low weight-for-length scores
than the least likely group, so that 𝑅𝑅-"∣!+# = 3

Suppose mothers with HIV infection in the study compared to
those not in the study are twice as likely to be food insecure, so
that 𝑅𝑅*-"∣!+# = 2

Smith & VanderWeele 2019 29



Computing the bound

𝑅𝑅*+,-. ≤ 𝐵.×𝐵/×𝑅𝑅012345

Plugging in the plausible parameters:

𝑅𝑅*+,-. ≤
3×2

3 + 2 − 1
×

2.3×2.5
2.3 + 2.5 − 1

×𝑅𝑅012345

Plugging in the observed estimate:
6.75 ≤ 2.27×𝑅𝑅012345

This amount of bias could not fully explain an observed risk ratio of
6.75.

We can also consider the lower limit of the confidence interval, 2.79.

In the worst case scenario, 𝑅𝑅*+,-. is still consistent with 2.79/2.27
= 1.23
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R package

library(EValue)

HIV_biases <- multi_bias(confounding(), 
selection("general", "increased risk"))

HIV_biases

## The following arguments can be copied and 
pasted into the multi_bound()

## function: RRAUc = , RRUcY = , RRUsYA1 = , 
RRSUsA1 =

31



R package

multi_bound(biases = HIV_biases, 
RRAUc = 2.3, RRUcY = 2.5, 

RRUsYA1 = 3, RRSUsA1 = 2)

## [1] 2.269737

summary(HIV_biases)

##          bias     output argument

## 1 confounding     RR_AUc RRAUc

## 2 confounding     RR_UcY RRUcY

## 3   selection RR_UsY|A=1  RRUsYA1

## 4   selection RR_SUs|A=1  RRSUsA1

32



Computing many bounds

The parameter values, though informed by background knowledge and
data reported in the article, aren’t known.
We should vary the parameters over a range of values.
# vary RRAUc from 1.25 to 3
sapply(seq(1.25, 3, by = .25), function(RRAUc) {

multi_bound(biases = HIV_biases, RRAUc = RRAUc, 
RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

})

## [1] 1.704545 1.875000 2.019231 2.142857 
2.250000 2.343750 2.426471 2.500000

# ?multi_evalue()
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What about exposure misclassification?

The bound for exposure misclassification from VanderWeele & Li 2019 applies
to the odds ratio, not the risk ratio, and the sensitivity parameters are also not
risk ratios. That is,

Pr 𝑌 = 1 ∣ 𝐴∗ = 1, 𝑐
Pr 𝑌 = 0 ∣ 𝐴∗ = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴∗ = 0, 𝑐
Pr 𝑌 = 0 ∣ 𝐴∗ = 0, 𝑐

≤ BF%′×

Pr 𝑌 = 1 ∣ 𝐴 = 1, 𝑐
Pr 𝑌 = 0 ∣ 𝐴 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴 = 0, 𝑐
Pr 𝑌 = 0 ∣ 𝐴 = 0, 𝑐

for

BF%′ = OR"!∗∣+ = max

𝑠′*
1 − 𝑠′*
𝑠′,

1 − 𝑠′,

,

𝑓′*
1 − 𝑓′*
𝑓′,

1 − 𝑓′,

,

𝑓′*
𝑓′,

1 − 𝑠′*
1 − 𝑠′,

,

𝑠′*
𝑠′,

1 − 𝑓′*
1 − 𝑓′,

where 𝑠′# = Pr 𝐴∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 1, 𝑐 and 𝑓′# = Pr(
)

𝐴∗ = 1 ∣ 𝑌 = 𝑦, 𝐴
= 0, 𝑐 .
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Which causes a problem

Applying this bound after factoring out selection bias, we
would find that we are left with

RR%&obs ≤ BF)′×BF$×BF#×RR%&true×

Pr 𝑌 = 0 ∣ 𝐴 = 0, 𝑐
Pr 𝑌 = 0 ∣ 𝐴 = 1, 𝑐 ×

Pr 𝑌 = 0 ∣ 𝐴∗ = 1, 𝑐
Pr 𝑌 = 0 ∣ 𝐴∗ = 0, 𝑐

However, if the outcome is sufficiently rare in all strata, a
simpler bound holds approximately
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Result for exposure misclassification

Under the previous assumptions, with a rare outcome:

RR!"obs1 =
Pr 𝑌 = 1 ∣ 𝐴∗ = 1, 𝑆 = 1, 𝑐
Pr 𝑌 = 1 ∣ 𝐴∗ = 0, 𝑆 = 1, 𝑐
≲ BF&′×BF,×BF0×RR!"true

for BF&′ = OR"!∗∣.,*+#
with 𝑠′( = Pr 𝐴∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐 and
𝑓′( = Pr 𝐴∗ = 1 ∣ 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐

i.e., generally odds ratios for the sensitivities/false positive
probabilities in the two outcome groups
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Example with exposure misclassification
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R examples

We walk you through how this simple sensitivity analysis for
multiple biases works in R code here:

https://cran.r-project.org/web/packages/EValue/vignettes/

multiple-bias.html

and share examples:

https://cran.r-project.org/web/packages/EValue/vignettes/

multiple-bias-examples.html

38

https://cran.r-project.org/web/packages/EValue/vignettes/multiple-bias.html
https://cran.r-project.org/web/packages/EValue/vignettes/multiple-bias.html
https://cran.r-project.org/web/packages/EValue/vignettes/multiple-bias-examples.html
https://cran.r-project.org/web/packages/EValue/vignettes/multiple-bias-examples.html
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