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I Layers of distortion

“The main lesson from our causal model of bias is that we
should question the adequacy of qualitative assessments of
bias in the Discussion sections of study reports. Even with
the help of user-friendly notation and illustrations, it is hard

to think about all these causes of bias simultaneously.”

Can’t rely on heuristics...

Maclure & Schneeweiss, 2001 4



I Multiple-bias modelling

J. R. Statist. Soc. A (2005)

168, Part 2, pp. 267-306 “Formulae can be

Multiple-bias modelling for analysis of observational
data

Sander Greenland

University of California, Los Angeles, USA

[Read before The Royal Statistical Society on Wednesday, September 29th, 2004, the
President, Professor A. P. Grieve, in the Chair]

Summary. Conventional analytic results do not reflect any source of uncertainty other than
random error, and as a result readers must rely on informal judgments regarding the effect of
possible biases. When standard errors are small these judgments often fail to capture sources
of uncertainty and their interactions adequately. Multiple-bias models provide alternatives that
allow one systematically to integrate major sources of uncertainty, and thus to provide better
input to research planning and policy analysis. Typically, the bias parameters in the model are
not identified by the analysis data and so the results depend completely on priors for those
parameters. A Bayesian analysis is then natural, but several alternatives based on sensitivity
analysis have appeared in the risk assessment and epidemiologic literature. Under some cir-
cumstances these methods approximate a Bayesian analysis and can be modified to do so even
better. These points are illustrated with a pooled analysis of case—control studies of residential
magnetic field exposure and childhood leukaemia, which highlights the diminishing value of
conventional studies conducted after the early 1990s. It is argued that multiple-bias modelling
should become part of the core training of anyone who will be entrusted with the analysis of
observational data, and should become standard procedure when random error is not the only
important source of uncertainty (as in meta-analysis and pooled analysis).

applied in
seqguence to
correct multiple
biases... One can
imagine each
correction moving
a step from the
biased data back
to the unbiased
structure, as if
hypothetically
‘unwrapping the
truth from the
data package’.”



I Multiple-bias modelling

“multiple-bias modelling should become part of the core

training of anyone who will be entrusted with the analysis of
observational data”

“For a sensitivity analysis to be useful, it is surely necessary
that the assumptions which drive the different conclusions
are sufficiently transparent that they can be communicated.
Even to a statistical audience, Professor Greenland’s bias

models have taken several pages to explain....”

Greenland, 2005, discussion by Copas 6



I Multiple-bias modelling

Statistics for Biology and Health

Timothy L. Lash
Matthew P. Fox
Aliza K. Fink

episensr

Cases

https://dhaine.github.io/episensr/articles/
¢ multiple bias.html
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ICurrent state of bias analysis?

A systematic review of quantitative bias
analysis applied to epidemiological research

Julie M Petersen ® ,'* Lynsie R Ranker ®," Ruby Barnard-Mayers ® ,’
Richard F MacLehose ® 2 and Matthew P Fox ® '3
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e 238 quantitative bias analyses in epidemiologic literature 2006-2019

* 23% were an applied example in a methods paper or an entire paper
devoted to the bias analysis

* 87% only modelled one bias



Toward a "simpler” sensitivity analysis

ORIGINAL ARTICLE

Sensitivity Analysis Without Assumptions

Peng Ding* and Tyler J. VanderWeele®

Abstract: Unmeasured confounding may undermine the validity of
causal inference with observational studies. Sensitivity analysis pro-

vides an attractive way to partially circumvent this issue by assessing the
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causal inferences even without full control of the confounders of
the relationship between the exposure and outcome.

Sensitivity analysis plays a central role in assessing the
influience of the nnmeasured confoindine on the cansal con-

RESEARCH AND REPORTING METHODS Annals of Internal Medicine

Sensitivity Analysis in Observational Research: Introducing the E-Value

Tyler J. VanderWeele, PhD, and Peng Ding, PhD

Sensitivity analysis is useful in assessing how robust an associa-
tion is to potential unmeasured or uncontrolled confounding.
This article introduces a new measure called the “E-value,” which
is related to the evidence for causality in observational studies
that are potentially subject to confounding. The E-value is de-
fined as the minimum strength of association, on the risk ratio
scale, that an unmeasured confounder would need to have with
both the treatment and the outcome to fully explain away a spe-
cific treatment-outcome association, conditional on the mea-
sured covariates. A large E-value implies that considerable un-
measured confounding would be needed to explain away an
effect estimate. A small E-value implies little unmeasured con-
founding would be needed to explain away an effect estimate.

The authors propose that in all observational studies intended to
produce evidence for causality, the E-value be reported or some
other sensitivity analysis be used. They suggest calculating the
E-value for both the observed association estimate (after adjust-
ments for measured confounders) and the limit of the confi-
dence interval closest to the null. If this were to become standard
practice, the ability of the scientific community to assess evi-
dence from observational studies would improve considerably,
and ultimately, science would be strengthened.

Ann Intern Med. 2017;167:268-274. doi:10.7326/M16-2607
For author affiliations, see end of text.
This article was published at Annals.org on 11 July 2017. 9

Annals.org



I Framework using bounds

bias parameters X =
observed risk ratio (RR) < f(X) X causal RR =

causal RR > observed RR/f(X)

We can make statements of the form: “If the bias is of magnitude X,
the true causal RR must be at least as large as °Pserved RR/f(X)

The E-value inverts that statement and tells us what the minimum

X would have to be for the observed RR to be compatible with a
certain causal RR, usually the null.

10



IAppIy bounding framework to sequence
of biases
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I Notation

A: exposure (consider two values, 0 and 1)
Y: binary outcome
Y,: counterfactual outcome under exposure A = a

C: measured covariates — best attempt to avoid bias

What we want: causal risk ratio

12



I Notation

What we can estimate: observed risk ratio

_Pr(Y*=114=18=1,c)
CPr(Y*=114=0,S=1,¢)

Y*: observed Y

S: indicator of selection into the study, such that we only

have data on the subset of the population for which § = 1

13



IWhat’s the problem?

U.: unmeasured confounder(s)

Us: unmeasured cause(s) of

selection U. ()

14



I Peeling off the layers

pobs _ P =114=15=17¢)
A Pr(Y*=114=0,5=1,¢)
RRtrue _ Pr(Y1 —_ 1 | C)
A Pr(Yp =11c¢)

Assume that there exist U, and U, such that
YIISIA,C U;and Y, ]]A | C,U,,
but that it is not necessarily true that

YIISIA,CorY,J]AI|C

15



I Layer 1: outcome misclassification

Pr(Y*=1|Y=y,A=1,S=1c) Pr(Y=114=1,S=1,¢)
AY < max X
y Pr(v*=11Y=y,A=0,S=1c) Pr(Y=114=0,S=1,¢)

misclassification bounding factor

BF,, = RR . Pr(Y*=11Y=y,A=1,5=1,0)
m = A ys= = N ey =11V =5,4=0,S= 1,0)

Pr(Y=114=1,5=1,¢)
P(Y=114=0,S=1,c¢)

RROPS < BF,,x

the part of the package with no
misclassification

16



I Layers 2 and 3: selection and confounding

Pr(Y=1|A=1,S=1,c)<BF ><Pr(Y=1|A=1,c)

Pr(Y=1|A=0,S=1,c)/_ Pr(Y=114=0,¢)

selection bias bounding factor the part of the package with no
selection bias

/

Pr(Y =114 =1,¢) Pr(Y1 =11¢)

< BF.X
Pr(Y=1|A=O,c)/C Pr(Yy=11¢)
confounding bounding factor RR‘E&UG

17



Iln summary

Pr(Y=114=1,5S=1,c)

RREPS < BF X Pr(Y=11A=05S=10)

Pr(Y=114=1,¢)
Pr(Y=114=0,c¢)

< BF,, XBF4X

Pr(Y]_ —_ 1 | C)
< BF,, XBFXBF.X Ty =115
= BF,,, XBFXBF,XRRLY€

18



Proof?
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Practice of Epidemiology

Simple Sensitivity Analysis for Differential Measurement Error

Tyler J. VanderWeele* and Yige Li

* Correspondence to Dr. Tyler J. VanderWeele, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677
Huntington Avenue, Boston, MA 02115 (e-mail: tvanderw @ hsph.harvard.edu).

Initially submitted November 1, 2018; accepted for publication May 17, 2019.

Sensitivity analysis results are given for differential measurement error of either the exposure or outcome. In the
case of differential measurement error of the outcome, it is shown that the true effect of the exposure on the out-
come on the risk ratio scale must be at least as large as the observed association between the exposure and the
mismeasured outcome divided by the maximum strength of differential measurement error. This maximum
strength of differential measurement error is itself assessed as the risk ratio of the controlled direct effect of the ex-
posure on the mismeasured outcome not through the true outcome. In the case of differential measurement error
of the exposure, under certain assumptions concerning classification probabilities, the true effect on the odds ratio
scale of the exposure on the outcome must be at least as large as the observed odds ratio between the mismea-
sured exposure and the outcome divided by the maximum odds ratio of the effect of the outcome on mismeasured
exposure conditional on the true exposure. The results can be immediately used to indicate the minimum strength
of differential measurement error that would be needed to explain away an observed association between an expo-
sure measurement and an outcome measurement for this to be solely due to measurement error.

bias analysis; differential; measurement error; misclassification; sensitivity analysis
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esis of no causal effect. Although some sensitivity analysis

19



I Layer 1: outcome misclassification

BF,, = RR . Pr(y*=11Y=y,A=15=1c)
m = Ryl s=1 = X e 1Y =y,4=0,5 = 1,0)

How much greater is the outcome sensitivity among the exposed

vs. the unexposed?

or

How much more likely are false-positives among the exposed vs.

the unexposed?

This is specific to the selected group.

20



I Layer 2: selection

_ RRy,y1a=1XRRgy ja=1 RRy,y14=0XRRsy14=0
RRUSYIA:1 + RRSUS|A=1 —1 RRUSYIA:O + RRSUSIA:O -1

BF,

where

maxPr(Y =1[A=a,c,U; = u)

RRy.v|A=a = —
s A= minPr(Y =11A=a,c,U; = u)

u

Pr(Us =ulA=15=1,c¢)

fora=0,1

RR - =
SUslA=1 max Pr(lU;=ulA=1S=0,c)
RR o Pr(US=UIA=O,S=O,C)
SUsl4=0 P U, =ulA=0,S=10)

21



I Layer 2: selection

maxPr(Y =11A=a,c,U; = u)
u

RRy.ylA=qg = fora =01
UsYld=a minPr(Y =114 =a,c,Us = u) e
u
RR __ PrUs=ulA=15=1c)
SUslA=1 B mlztax PrilUs=ulA=1,5=0,c)
PI"(US =u|A=0S5=0,c)
RRsug14=0 = Mmax

u Pr(lUs=ulA=0S5=1,c)
To what extent is the outcome risk increased by the unmeasured
factor, within a single level of the exposure?

To what extent is some value of the unmeasured factor more
prevalent among the selected compared to the non-selected
group?

22



I Layer 3: confounding

~ RRgy, XRRy,y

BF,
where

. B Pr(U.=ulA=1,c)
AU ~ P (U, =ulA=00)
maxPr(Y =1|A=a,c,U, = u)

RR = max —=
UcY a mnPr(Y=114=aqa,c,U, =u)
u

How much more prevalent is the confounder among the exposure
than the unexposed?

How much extra risk of the outcome does the confounder confer

among either the exposed or unexposed?
23



I Peeling off the layers in a different order?

Assume that there exist U and U, such that

Y*[IS|A4,C, U;and Y,[[A | C,U..

This may be a more interpretable assumption if, for example,
selection into the study is based on a factor related to the
(mis)measured outcome, not the true outcome.

Recall the earlier assumptions were:

YIISIA,C,U;and Y, ]]A | C,U,

24



I Example: confounding and selection

Does infection to HIV in utero increase the risk of wasting?

Sample: Children of participants of a vitamin A
supplementation trial in Zimbabwe

Exposure: Exposed vs. unexposed to HIV in utero

Outcome: Weight-for-length Z-score of < -2 as toddlers

RRSYS = 6.75 (95% Cl, 2.79, 16.31)

Omoni et al. 2017 25



Concern about confounding and selection
bias

Observational study with respect to HIV infection, but no adjustment
for confounders

» The authors did not adjust for parity or marital status, though they
report that primiparous women were less likely to have HIV, as were
married women

» We may be concerned that children in single-parent households and
those with more siblings are at higher risk of wasting

Enrollment occurred at delivery, after possible HIV exposure and
transmission

» The choice of whether to participate in the trial could have been
affected by HIV status as well as other factors (e.g., food insecurity),
leading to selection bias if those factors affect future child growth

26
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Family characteristics
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HIV transmission in utero ------------------ » Weight-for-age Z-score

\

Supplementation trial participation

\

Food insecurity
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I Plausible parameters: confounding

» The authors reported proportions of these characteristics
stratified by exposure, which can aid in coming up with a

reasonable value for RR,y._.

» Suppose we estimate that 3% of the women whose infants are
infected with HIV are multiparous and unmarried, but that this is

true of 7% of the women without HIV.

e |[f this is the family situation with the largest disparity between exposure
groups, then we can specify RR,y = 2.3.

» Now suppose that children in these most precarious families
have 2.5 times the risk of wasting than those in the least
precarious, so that RRyy = 2.5

28



I Plausible parameters: selection

We assume that wasting is more likely in children of participants
than of non-participants, both among those with HIV as well as
those without

It turns out that if this is the case, we only need two of the
parameters:

» Suppose that children of the most food-insecure mothers are
3 times as likely to have extremely low weight-for-length scores
than the least likely group, so that RRyyj4=1 = 3

» Suppose mothers with HIV infection in the study compared to
those not in the study are twice as likely to be food insecure, so
that RRSUS|A:1 = 2

Smith & VanderWeele 2019 29



IComputing the bound

RRSES < B.xB.xRR.YHe
Plugging in the plausible parameters:

RRODS < 3X2 2.3%2.5
A S 15035251
Plugging in the observed estimate:
6.75 < 2.27XRRIH€

R true

This amount of bias could not fully explain an observed risk ratio of
6.75.

We can also consider the lower limit of the confidence interval, 2.79.

In the worst case scenario, RR3%S is still consistent with 2.79/2.27
= 1.23

30



I R package

library (EValue)

HIV biases <- multi bias(confounding(),
selection("general”, "increased risk"))

HIV biases

## The following arguments can be copied and
pasted into the multi bound()

## function: RRAUc = , RRUcY = , RRUsYAl = ,
RRSUsAl =

31



I R package

multi bound(biases = HIV biases,

RRAUc = 2.3, RRUcY = 2.5,
RRUsYAl = 3, RRSUsAl = 2)

## [1] 2.269737

summary (HIV biases)

## bias output argument
## 1 confounding RR AUc RRAUC
## 2 confounding RR UcY RRUcCY

## 3  selection RR UsY|A=1] RRUsYAl
## 4  selection RR SUs|A=1 RRSUsAl

32



IComputing many bounds

The parameter values, though informed by background knowledge and
data reported in the article, aren’t known.

We should vary the parameters over a range of values.

# vary RRAUc from 1.25 to 3
sapply(seqg(1.25, 3, by = .25), function(RRAUc) {
multi bound(biases = HIV biases, RRAUc = RRAUc,
RRUcY = 2.5, RRUsYAl = 3, RRSUsAl = 2)

})

## [1] 1.704545 1.875000 2.019231 2.142857
2.250000 2.343750 2.426471 2.500000

# ?multi evalue()

33



IWhat about exposure misclassification?

The bound for exposure misclassification from VanderWeele & Li 2019 applies
to the odds ratio, not the risk ratio, and the sensitivity parameters are also not
risk ratios. That is,

Pr(Y =1]A4*=1,¢) PriY =114=1,c¢)
Pr(Y =0 A* = 1,¢) Priy =01A=1,¢c)

< !/
Pr(Y =114 =0,0) =™ Pr(Y =114 =0,0)
Pr(Y =0 A*=0,¢) Pr(y¥ =014 =0,c)
for
s'1 f1 ﬂ ﬁ

1-sv 1=f1 [ s'o

so ' flo "1-=84"1-f"
1-50 1=fg 1=5g 1=/
wheres’y=Pr(A*=1|Y=y,A=1,c)andf’y=Pr(A*=1|Y=y,A
=0,c).

BFm, = ORYA*|CL = MaxX

34



IWhich causes a problem

Applying this bound after factoring out selection bias, we
would find that we are left with

RROPS < BF, ’xBF XBF,xRRIUE x

Pr(Y =014=0,c) Pr(¥=014"=1,0)
Pr(Y =01A=1,¢c) Pr(Y=0]A*=0,c)

However, if the outcome is sufficiently rare in all strata, a

simpler bound holds approximately

35



I Result for exposure misclassification

Under the previous assumptions, with a rare outcome:

CPr(Y=114"=1,5=1.c)
Pr(Y=114*=0,S=1,¢c)
< BF,,,'XBF¢XBF . XRRYHE

for BFm, = ORYA*|CL,S:1

with s’y =Pr(A*=11Y=y,A=1,5S=1,c) and
fly=PrA*"=11Y=y,A=0,S=1,c)

RROPS’

i.e., generally odds ratios for the sensitivities/false positive
probabilities in the two outcome groups

36



I Example with exposure misclassification

ORIGINAL ARTICLE

Multiple-bias Sensitivity Analysis Using Bounds

Louisa H. Smith,* Maya B. Mathur,® and Tyler J. VanderWeele**

Abstract: Confounding, selection bias, and measurement error are
well-known sources of bias in epidemiologic research. Methods for
assessing these biases have their own limitations. Many quantitative
sensitivity analysis approaches consider each type of bias individu-
ally, although more complex approaches are harder to implement or
require numerous assumptions. By failing to consider multiple biases
at once, researchers can underestimate—or overestimate—their joint
impact. We show that it is possible to bound the total composite bias
owing to these three sources and to use that bound to assess the sen-
sitivity of a risk ratio to any combination of these biases. We derive
bounds for the total composite bias under a variety of scenarios, pro-
viding researchers with tools to assess their total potential impact.
We apply this technique to a study where unmeasured confounding
and selection bias are both concerns and to another study in which
possible differential exposure misclassification and confounding are
concerns. The approach we describe, though conservative, is easier
to implement and makes simpler assumptions than quantitative bias
analysis. We provide R functions to aid implementation.

Keywords: Bias analysis; Causal inference; Differential misclassifi-
cation; Selection bias; Unmeasured confounding

(Epidemiology 2021;32: 625-634)

better sampling schemes, blinded outcome ascertainment,
more extensive covariate measurements, and so on—other
times confounding, selection bias, and measurement error
are unavoidable. In such situations, our next best option is
to assess the extent to which a given study’s conclusions
might be sensitive or robust to these biases and whether they
threaten its conclusions. Often, however, this is limited to a
few sentences in a discussion section qualitatively assessing
the possibility of bias, sometimes appealing without quantita-
tive justification to heuristics that may or may not hold true in
a particular study.!

The weak uptake of quantitative bias analysis in epi-
demiology belies its long history. Over a half century ago,
Cornfield and then Bross argued that the extent of possible
bias was quantifiable based on observed data and possi-
bly hypothetical quantities.*’ Attempts to generalize these
results, as well as consider other biases, sometimes simultane-
ously with confounding, followed.”"!> More recently, proba-
bilistic bias analysis methods have been developed, allowing
researchers to propose distributions for various bias param-
eters across multiple biases and to explore how various com-
binations of those parameters would affect their results.!*!®

37



I R examples

We walk you through how this simple sensitivity analysis for
multiple biases works in R code here:

https://cran.r-project.org/web/packages/EValue/vignettes/

multiple-bias.html

and share examples:

https://cran.r-project.org/web/packages/EValue/vignettes/

multiple-bias-examples.html

38
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