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Today’s goals
Understand the target trial framework and why it’s useful
in reproductive and perinatal research

Explore different types of pregnancy research questions
that may be addressed with this approach

Discover some intuition behind the clone-censor-
weighting approach through a numeric example
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Why pregnancy research is challenging
Complex timing issues (exposure, outcomes, competing
events)

Immortal time bias is pervasive

Multiple individuals (pregnant person, fetus, child)

Need for clarity about what we’re estimating

The target trial framework forces us to be explicit about who, what, when, and how
(I guess where too, but not usually as much of a problem!)

One solution
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One problem: time zero
Many observational studies don’t have a clear “time zero”
when treatment assignment occurs

Example: Comparing pregnancy outcomes in:

People who took antidepressants during pregnancy

People who didn’t take antidepressants during pregnancy

When are they “assigned” to exposure groups?
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Immortal time bias
If we define groups based on what actually happened during
pregnancy:

“Exposed” group = those who took medication at some
point

“Unexposed” group = those who never took medication

The exposed group had to survive long enough (e.g. remain
pregnant) to take the medication!

This is a problem whenever the outcome depends on time
(i.e., not just survival)

7



What is a target trial?

A hypothetical randomized trial that would answer your
causal question if it could be conducted

The target trial is a design concept, not an analysis method. It has guided study
design in epidemiology for decades but recently popularized as an explicit
framework ( ).

Note

Miguel A. Hernán and Robins 2016
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Why a trial?
Randomized trials have clear advantages for causal
inference:

Randomization at baseline

Not the case in observational data no matter what we
do, but we can try with good confounder measurement
and reasonable eligibility criteria

Stringent eligibility criteria

Everyone who enters the study has equipoise for the
treatment strategies being compared
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Why a trial?
Randomized trials have clear advantages for causal
inference:

Clear time zero

Everyone is assigned to treatment and starts follow-up
at the same time

We can make this happen in observational data with
careful design



Well-defined treatment strategies

In order to give participants their assigned treatment,
people have to have rules to follow!

We can define these rules in observational data too
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Why a target trial?
We know we can’t run the randomized trial we want to
conduct to answer our causal question (lack of resources,
unethical to randomize, impossible to provide certain
treatments/exposures, too many years of follow-up needed,
too many treatment strategies to compare, etc.)

But we can design it hypothetically

And then try to emulate it as closely as possible with
observational data
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Emulating a target trial

The observational study should be designed so as to match
up with this trial as closely as possible

Don’t jump straight to emulation without carefully thinking through the trial,
though it can be helpful to think ahead. Compromises in emulation should be
explicit and justified.

Warning
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Essential components
1. Eligibility criteria

2. Treatment strategies

3. Assignment procedures

4. Follow-up period

5. Outcome(s)

6. Causal contrast(s)

7. Statistical analysis plan

Recently published guidelines for reporting target trial emulations detail these components: Cashin et al. ( )

Note

2025
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Eligibility criteria: the “who”
Besides making for a clearer question with more practical
implications, eligibility criteria can help address confounding
in the emulation by ensuring everyone included has a
reasonable chance of getting the treatment strategies being
compared*

We might exclude people with contraindications to
treatment, or those who would never consider it

This often means defining pregnancy status and
gestational age at time zero carefully

*Always need positivity: everyone included must have some non-zero probability of
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Time zero: the “when”
The eligibility criteria also define when people enter the
study

Time zero occurs when people meet eligibility criteria
(and in a trial, agree to be randomized)

We could imagine scenarios where people meet eligibility
repeatedly over time (e.g., at every antenatal care visit)

We can take this into account when emulating
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Treatment strategies: the “what” and
“how”
Each strategy represents an intervention we could imagine
putting in motion at time zero for a given treatment arm:

Immediately upon randomization, tell everyone to get
treatment (e.g., a vaccination)

At 6 weeks gestation (time zero), tell everyone to start
treatment at 12 weeks gestation but not before

Tell everyone to wait until 20 weeks to start treatment

Tell everyone to start treatment when symptoms appear
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This is easier for some causal questions
than others

Pharmaceutical interventions with fixed timing (e.g.,
vaccination at week 32 vs. no vaccination)

Procedure at some known clinical event (e.g., cerclage at
diagnosis of short cervix vs. no cerclage)

Comparisons of two treatments with the same indication

It’s helpful to read through existing randomized trials on similar questions to see
how they defined these components, see  for ideas!

Tip

clinicaltrials.gov
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Pharmaceutical example (Zidan et al. ( ))
Components Target trial

Causal
question

What is the effect of SARS-CoV-2 mRNA vaccine BNT162b2 on
COVID-19?

Eligibility
criteria

Inclusion criteria:

1. Healthy women ≥18 years of age who are between 24 0/7 and 34
0/7 weeks’ gestation on the day of planned vaccination, with an
uncomplicated, singleton pregnancy.

2. Healthy participants determined by medical history, physical
examination, and clinical judgment to be appropriate for inclusion
in the study.

3. Documented negative HIV antibody test.

Exclusion criteria:
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Components Target trial

1. Other medical or psychiatric condition including recent (within the
past year) or active suicidal ideation/behavior.

2. Previous clinical or microbiological diagnosis of COVID-19.

3. Participants with known or suspected immunodeficiency.

4. Bleeding diathesis or condition associated with prolonged
bleeding.

5. Previous vaccination with any COVID-19 vaccine.

6. Current alcohol abuse or illicit drug use.

7. Participants who receive treatment with immunosuppressive
therapy.

Treatment
strategies

1. Two vaccination doses

2. No SARS-CoV-2 vaccination until the end of pregnancy

Assignment
procedures

1:1 randomization into the two treatment arms, stratified by
gestational week

19



Components Target trial

Other types of questions
It may feel weird to design a target trial for other types of
causal questions

Unethical/impossible to randomize

e.g., harmful exposures, social determinants of health

It’s worth thinking through anyway to make sure you are
clear about your causal question of interest (you don’t have
to publish it as a “target trial”!)
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Non-pharmaceutical example (Smith et al. ( ))
Components Target trial

Causal
question

What is the effect of COVID-19 infection on preterm delivery?

Eligibility
criteria

1. Pregnant individuals with gestational age 12-36 weeks.

2. No known previous SARS-CoV-2 infection

3. No previous vaccination for COVID-19

Treatment
strategies

1. Symptomatic COVID-19 within a week after enrollment.

2. No SARS-CoV-2 infection for the rest of the pregnancy.

Assignment
procedures

Randomization at enrollment, stratified by gestational age (in
weeks).

Follow-up Patients are followed from the time of COVID-19 testing or
enrollment (time zero) until delivery, loss to follow-up, or
administrative end of follow-up.
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Outcome Preterm delivery, defined as delivery before 37 completed
weeks of gestation.

Causal
contrast

Intention-to-treat effect on the risk ratio and risk difference
scales for each gestational week (time zero)
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Notes on these components and things to think about in emulation (hopefully not compromises
to the integrity of the target trial)

Components Target trial

Eligibility
criteria

Based only on pre-baseline characteristics

Generally requires pre-baseline observation window

Treatment
strategies

Won’t be able to emulate actual placebo or blinding (can
assign no treatment if realistic)

Some people must have “adhered” to the treatment strategy

Assignment
procedures

Randomization (within levels of confounders) is always an
assumption

Assignment “happens” as soon as someone meets eligibility
criteria



Follow-up Monitoring for the outcome throughout follow-up (e.g.,
SARS-CoV-2 testing) may need to be part of the treatment
strategy

Outcome Outcome ascertainment can’t be blinded in emulation

Causal
contrast

Intention-to-treat effect makes sense when “most” of the
treatment happens immediately upon randomization

Per-protocol useful when you don’t know right away who
starts what treatment
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Examples
Avalos et al. ( )

Caniglia et al. ( )

Chiu et al. ( )

Wong et al. ( )

2023

2018

2024

2024

23



Discussion
1. What was the causal question?

2. What were the key components of the target trial
protocol, including eligibility criteria, treatment
strategies, etc. What was time zero?

3. What made this question challenging to design an
“emulatable” target trial?

4. How did the authors handle the challenge? Were there
compromises made?
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Avalos et al. ( ) - Treating
hypertension at different thresholds
Key features/challenges:

Treatment strategies are dynamic - depend on clinical
measurements, don’t know ahead of time who will need
treatment when

People can be part of multiple treatment groups over time

2023
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Caniglia et al. ( ) - Antiretroviral
therapy started before conception
Key features/challenges:

Treatment/time zero occurs before pregnancy

Competing event: not getting pregnant

Can’t condition on pregnancy without bias

Treatment strategy includes getting pregnant within a
certain time frame

2018
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Chiu et al. ( ) - Metformin in first
trimester
Key features/challenges:

Treatment happens early in pregnancy

Competing risks: pregnancy loss – can’t observe
malformations without live birth

Use of composite outcome

2024
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Wong et al. ( ) - COVID-19 antiviral
within 5 days of infection
Key features/challenges:

Treatment must start within a short window after
infection (grace period)

Rare exposure, rare outcomes

2024
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Common themes across papers
1. Time zero must be clearly defined

Before hypertension (Avalos)

Preconception (Caniglia)

Early pregnancy (Chiu)

At sympomatic infection (Wong)

2. Strategies must be realistic and well-defined

Not just “exposed vs. unexposed”

Include rules for what happens over time, e.g., grace period, blood pressure
monitoring

3. Competing events are common in pregnancy

Not conceiving competes with pregnancy outcomes

Pregnancy loss competes with later outcomes
29



Thoughts/questions
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Emulating target trials
with clone-censor
weighting
This example is somewhat based on an example about
comparing duration of treatment in Miguel A. Hernán ( )2018
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Does vaccination timing in pregnancy
affect live birth?
Eligibility: Unvaccinated, at/soon after conception

Treatment strategies:

Strategy 0: Never vaccinate during pregnancy

Strategy 1: Vaccinate in trimester 1 only

Strategy 2: Vaccinate in trimester 2 only

Strategy 3: Vaccinate in trimester 3 only

Outcome: Live birth (yes/no)
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Pregnancy timeline

We are simplifying things by assuming vaccination happens at the end of a
trimester, after any pregnancy losses

Note
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Randomized trial data
16 pregnant people randomly assigned to 4 strategies:

Person Assigned
strategy

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

A 0 0 0 0 0 0 0 1 1

B 0 0 0 0 0 1 - - 1

C 0 0 0 1 - - - - 0

D 0 1 - - - - - - 0

E 1 0 1 0 0 0 0 1 1

F 1 0 1 0 0 1 - - 1

G 1 0 1 1 - - - - 0

H 1 1 - - - - - - 0

I 2 0 0 0 1 0 0 1 1

J 2 0 0 0 1 1 - - 1



Person Assigned
strategy

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

K 2 0 0 1 - - - - 0

L 2 1 - - - - - - 0

M 3 0 0 0 0 0 1 1 1

N 3 0 0 0 0 1 - - 1

O 3 0 0 1 - - - - 0

P 3 1 - - - - - - 0
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Randomized trial results
By assigned strategy:

Assigned strategy N Live births Probability

0 4 2 0.5

1 4 2 0.5

2 4 2 0.5

3 4 2 0.5

All strategies have 50% live birth rate (we are operating in a
situation where the null hypothesis of no effect of
vaccination at any time is true)
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Moving to observational data
In observational data, we don’t see the assigned strategy.

We only see what actually happened:

When (if) people got vaccinated

When pregnancy losses occurred

Whether there was a live birth and when

Let’s classify people by observed vaccination status and
timing…
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Observed data
Same 16 people, but now we don’t know their assigned strategy:

Person Observed
treatment

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

A 0 (Never) 0 0 0 0 0 0 1 1

B 0 (Never) 0 0 0 0 1 - - 1

C 0 (Never) 0 0 1 - - - - 0

D 0 (Never) 1 - - - - - - 0

E 1 (Vax T1) 0 1 0 0 0 0 1 1

F 1 (Vax T1) 0 1 0 0 1 - - 1

G 1 (Vax T1) 0 1 1 - - - - 0

H 0 (Never) 1 - - - - - - 0

I 2 (Vax T2) 0 0 0 1 0 0 1 1

J 2 (Vax T2) 0 0 0 1 1 - - 1



Person Observed
treatment

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

K 0 (Never) 0 0 1 - - - - 0

L 0 (Never) 1 - - - - - - 0

M 3 (Vax T3) 0 0 0 0 0 1 1 1

N 0 (Never) 0 0 0 0 1 - - 1

O 0 (Never) 0 0 1 - - - - 0

P 0 (Never) 1 - - - - - - 0
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Naive analysis: by achieved vaccination
Classify by when they actually got vaccinated:

Observed vaccination N Live births Probability

0 (Never) 10 3 0.30

1 (Vax T1) 3 2 0.67

2 (Vax T2) 2 2 1.00

3 (Vax T3) 1 1 1.00
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The problem: immortal time bias!
Later vaccination appears highly protective!

But: People who got vaccinated later had to survive to that
point

All of the pregnancy losses get assigned to the “Never” or
“Vax T1” groups

By the time people are classified as “Vax T2” or “Vax T3”,
they have already survived those earlier periods
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Think like a randomized trial
In a randomized trial, people are assigned to strategies at
time zero – even if they don’t get treatment (by choice, not
surviving long enough, etc.), they are analyzed in their
assigned group*

*In an intention-to-treat analysis. Even under randomized assignment, an “as-treated”
40



Immortal time bias
Generally the not-treated group will underestimate the true risk, and the treated
group will overestimate it (the later treated, or longer duration required, the more the
bias):

Strategy True probability Naive estimate Bias

0 (Never) 0.50 0.30 ↓

1 (Vax T1) 0.50 0.67 ↑

2 (Vax T2) 0.50 1.00 ↑↑

3 (Vax T3) 0.50 1.00 ↑↑

This makes treatment appear to reduce risk when there is actually no effect (or if there
were a true effect of treatment, this might mask it)
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Emulation via clone-censor-weighting
Pretend you have a randomized trial in which everyone is
assigned to all strategies at time zero:

1. Clone everyone to all compatible strategies

2. Censor clones when they deviate from assigned strategy

3. Weight to correct for selection bias from censoring
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Step 1: Cloning
For each person, create clones for all treatment strategies

Person Assigned
strategy

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

A-0 0 0 0 0 0 0 0 1 1

B-0 0 0 0 0 0 1 - - 1

C-0 0 0 0 1 - - - - 0

D-0 0 1 - - - - - - 0

E-0 0 0 1 0 0 0 0 1 1

F-0 0 0 1 0 0 1 - - 1

G-0 0 0 1 1 - - - - 0

H-0 0 1 - - - - - - 0

I-0 0 0 0 0 1 0 0 1 1

J-0 0 0 0 0 1 1 - - 1



Person Assigned
strategy

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

K-0 0 0 0 1 - - - - 0

L-0 0 1 - - - - - - 0

M-0 0 0 0 0 0 0 1 1 1

N-0 0 0 0 0 0 1 - - 1

O-0 0 0 0 1 - - - - 0

P-0 0 1 - - - - - - 0
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Treatment strategy Vax T1
Person Assigned

strategy
Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

A-1 1 0 0 0 0 0 0 1 1

B-1 1 0 0 0 0 1 - - 1

C-1 1 0 0 1 - - - - 0

D-1 1 1 - - - - - - 0

E-1 1 0 1 0 0 0 0 1 1

F-1 1 0 1 0 0 1 - - 1

G-1 1 0 1 1 - - - - 0

H-1 1 1 - - - - - - 0

I-1 1 0 0 0 1 0 0 1 1

J-1 1 0 0 0 1 1 - - 1

K-1 1 0 0 1 - - - - 0



Person Assigned
strategy

Loss
T1

Vax
T1

Loss
T2

Vax
T2

Preterm Vax
T3

Term
birth

Live
birth

L-1 1 1 - - - - - - 0

M-1 1 0 0 0 0 0 1 1 1

N-1 1 0 0 0 0 1 - - 1

O-1 1 0 0 1 - - - - 0

P-1 1 1 - - - - - - 0
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And so on…
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Step 2: Censoring
Censor clones when their observed data becomes incompatible with assigned
strategy:

Strategy 0 (never): censor if vaccinated in T1, T2, or T3

Strategy 1 (vax T1): censor if not vaccinated in T1

Strategy 2 (vax T2): censor if vaccinated in T1 or not vaccinated in T2

Strategy 3 (vax T3): censor if vaccinated in T1 or T2 or not vaccinated in T3

If there is a pregnancy loss in T1, do not censor afterward–we don’t know whether
they would have gotten vaccinated or not (can contribute to multiple strategies)
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Censoring
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Practice censoring
Picture

Data

http://localhost:6725/images/clipboard-2971386099.png
http://localhost:6725/ccw-example-data.csv
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Step 3: Weighting
Selection bias introduced by censoring must be corrected

Use inverse probability weighting:

Weight = 1 / (probability of remaining uncensored)

This would be conditional on current values of
covariates if we had them

Transfers weight from censored to uncensored
observations
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Calculating probability of remaining
uncensored
This varies over time, and can be calculated as the product of interval-specific
probabilities:

That is, the probability of still being uncensored at the end of T3 is:

the probability of not being censored in T1

times the probability of not being censored in T2 (given not censored in T1)

times the probability of not being censored in T3 (given not censored in T1 or T2)

Prob(uncensored at time 𝑡) = Prob(uncensored at 𝑘 ∣ uncensored at 𝑘 − 1)∏
𝑘=0

𝑡
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Original Data
library(tidyverse)1

2
trial_data <- read_csv("ccw-example-data.csv")3
trial_data4

# A tibble: 16 × 10
   person assigned loss_t1 vax_t1 loss_t2 vax_t2 preterm vax_t3  term livebirth
   <chr>     <dbl>   <dbl>  <dbl>   <dbl>  <dbl>   <dbl>  <dbl> <dbl>     <dbl>
 1 A             0       0      0       0      0       0      0     1         1
 2 B             0       0      0       0      0       1     NA    NA         1
 3 C             0       0      0       1     NA      NA     NA    NA         0
 4 D             0       1     NA      NA     NA      NA     NA    NA         0
 5 E             1       0      1       0      0       0      0     1         1
 6 F             1       0      1       0      0       1     NA    NA         1
 7 G             1       0      1       1     NA      NA     NA    NA         0
 8 H             1       1     NA      NA     NA      NA     NA    NA         0
 9 I             2       0      0       0      1       0      0     1         1
10 J             2       0      0       0      1       1     NA    NA         1
11 K             2       0      0       1     NA      NA     NA    NA         0
12 L             2       1     NA      NA     NA      NA     NA    NA         0
13 M             3       0      0       0      0       0      1     1         1
14 N 3 0 0 0 0 1 NA NA 1
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Step 1: Cloning
Each person is cloned into 4 copies (one for each vaccination
strategy: 0, 1, 2, 3)

16 people × 4 strategies = 64 rows

cloned_data <- trial_data %>%1
  crossing(strategy = 0:3) %>%2
  relocate(strategy, .after = person)3

4
cloned_data %>%5
  count(strategy)6

# A tibble: 4 × 2
  strategy     n
     <int> <int>
1        0    16
2        1    16
3        2    16
4        3    16
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Step 2: Censoring
censored_data <- cloned_data %>%1
  mutate(2
    # T1: only at risk if survived T13
    censored_t1 = case_when(4
      loss_t1 == 1 ~ NA,  # Already had outcome5
      strategy %in% c(0, 2, 3) & vax_t1 == 1 ~ TRUE,  # Deviated by vaccina6
      strategy == 1 & vax_t1 == 0 ~ TRUE,  # Deviated by not vaccinating7
      .default = FALSE  # Followed strategy8
    ),9
    10
    # T2: only at risk if uncensored and unvaccinated at T1 and survived T211
    censored_t2 = case_when(12
      is.na(censored_t1) | censored_t1 ~ NA,  # Already censored or had out13
      loss_t2 == 1 ~ NA,  # Had outcome at T214
      vax_t1 == 1 ~ NA,  # Already had vax at T115
      strategy %in% c(0, 3) & vax_t2 == 1 ~ TRUE,  # Deviated by vaccinatin16
      strategy == 2 & vax_t2 == 0 ~ TRUE,  # Deviated by not vaccinating17

.default = FALSE # Followed strategy18
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Censoring Summary
Different numbers contribute to each strategy:

censored_data %>%1
  group_by(strategy) %>%2
  summarise(3
    n_total = n(),4
    censored_t1 = sum(censored_t1 == TRUE, na.rm = TRUE),5
    censored_t2 = sum(censored_t2 == TRUE, na.rm = TRUE),6
    censored_t3 = sum(censored_t3 == TRUE, na.rm = TRUE),7
    total_censored = sum(censored),8
    uncensored = sum(!censored)9
  )10

# A tibble: 4 × 7
  strategy n_total censored_t1 censored_t2 censored_t3 total_censored uncensored
     <int>   <int>       <int>       <int>       <int>          <int>      <int>
1        0      16           3           2           1              6         10
2        1      16           9           0           0              9          7
3        2      16           3           4           0              7          9
4        3      16           3           2           1              6         10
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Step 3a: Calculate Censoring Probabilities
Probability of vaccination can be used to calculate interval-
specific censoring probabilities

1. Set up the data so that people who aren’t eligible to be
censored at a given timepoint don’t contribute (have NA
for vaccination status and/or subset to those not
previously censored or vaccinated

2. Model the probability of treatment (i.e., a propensity
score model!)
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Vaccination in T1 = censoring (strategy 0,
2, and 3) or not (strategy 1)

trial_data |>1
  filter(!is.na(vax_t1)) |>2
  pull(vax_t1, name = person)3

A B C E F G I J K M N O 
0 0 0 1 1 1 0 0 0 0 0 0 

mod_vax_t1 <- glm(vax_t1 ~ 1, data = trial_data, family = binomial())1
p_vax_t1 <- predict(mod_vax_t1, type = "response")[1] # all have same predi2
p_vax_t13

   1 
0.25 
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Vaccination in T2 = censoring (strategy 0
and 3) or not (2)
(For strategy 1, already censored if not vaccinated in T1 so
no one “at risk for” censoring here)

trial_data |>1
  filter(vax_t1 == 0, !is.na(vax_t2)) |>2
  pull(vax_t2, name = person)3

A B I J M N 
0 0 1 1 0 0 

mod_vax_t2 <- glm(vax_t2 ~ 1, data = trial_data, family = binomial(),1
                  subset = vax_t1 == 0)2
p_vax_t2 <- predict(mod_vax_t2, type = "response")[1]3
p_vax_t24

        1 
0.3333333 
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Vaccination in T3 = censoring (strategy 0)
or not (3)
(For strategies 1 and 2, already censored if not vaccinated in
T1 or T2 so no one “at risk for” censoring here)

trial_data |>1
  filter(vax_t1 == 0, vax_t2 == 0, !is.na(vax_t3)) |>2
  pull(vax_t3, name = person)3

A M 
0 1 

mod_vax_t3 <- glm(vax_t3 ~ 1, data = trial_data, family = binomial(), subse1
p_vax_t3 <- predict(mod_vax_t3, type = "response")[1]2
p_vax_t33

  1 
0.5 
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Step 3b: Calculate Weights
Weight = 1 / (cumulative probability of not being censored)

weighted_data <- censored_data %>%1
  mutate(2
    # Probability of not being censored at each time point3
    prob_not_cens_t1 = case_when(4
      is.na(censored_t1) ~ 1,  # Not at risk5
      strategy == 1 ~ p_vax_t1,  # Strategy 1: needs vax at T16
      strategy %in% c(0, 2, 3) ~ 1 - p_vax_t1,  # No vax at T17
      TRUE ~ 18
    ),9
    10
    prob_not_cens_t2 = case_when(11
      is.na(censored_t2) ~ 1,  # Not at risk12
      strategy == 2 ~ p_vax_t2,  # Strategy 2: needs vax at T213
      strategy %in% c(0, 3) ~ 1 - p_vax_t2,  # No vax at T214
      TRUE ~ 115
    ),16
    17

prob not cens t3 = case when(18
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Example: Strategy 0 (Never vaccinate)
Uncensored individuals and their weights:

weighted_data %>%1
  filter(strategy == 0, !censored) %>%2
  select(person, livebirth, weight)3

# A tibble: 10 × 3
   person livebirth weight
   <chr>      <dbl>  <dbl>
 1 A              1   4.00
 2 B              1   2.00
 3 C              0   1.33
 4 D              0   1   
 5 H              0   1   
 6 K              0   1.33
 7 L              0   1   
 8 N              1   2.00
 9 O              0   1.33
10 P              0   1   
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Step 3c: Calculate Weighted Outcomes
weighted_data %>%1
  filter(!censored) %>%2
  group_by(strategy) %>%3
  summarise(4
    sum_weights = sum(weight),5
    weighted_livebirths = sum(livebirth * weight),6
    risk_livebirth = weighted_livebirths / sum_weights7
  )8

# A tibble: 4 × 4
  strategy sum_weights weighted_livebirths risk_livebirth
     <int>       <dbl>               <dbl>          <dbl>
1        0        16.0                8.00          0.500
2        1        16.0                8.00          0.500
3        2        16.0                8.00          0.500
4        3        16.0                8.00          0.500
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Why it works
The three steps:

1. Cloning eliminates immortal time bias by assigning
strategies at time zero

2. Censoring ensures clones follow their assigned strategy

3. Weighting corrects for selection bias introduced by
censoring
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Key assumptions
No unmeasured confounding (of baseline treatment and
treatment continuation/discontinuation, i.e., time-varying
confounding)

Correct specification of censoring models

There are many different modeling assumptions we
could make, e.g., one model for vaccination with a term
for time, or separate models at each time point

Positivity (some probability of continuing the treatment
strategy at each time)
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When to use clone-censor-weighting
Treatment duration comparisons

Sustained treatment strategies that evolve over time

Variable timing of exposure

Threshold-based or dynamic treatment rules

Any strategy where assignment isn’t identifiable at time
zero

Multiple cycles or sequential treatment decisions
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Practical considerations
Descriptive analysis of treatment patterns

Check positivity (can strategies actually be followed?)

How will you define confounders (both baseline and time-
varying)

Start with simple examples to develop code

Check weight distributions
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Extensions and advanced topics
Grace periods for treatment initiation

Nested sequential trials

Joint strategies (treatment + monitoring)
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Helpful/interesting papers
Miguel A. Hernán et al. ( ) Cain et al. ( ) Young et al.
( ) Miguel A. Hernán et al. ( ) Miguel A. Hernán and
Robins ( ) Labrecque and Swanson ( ) Miguel A.
Hernán ( ) Caniglia et al. ( ) Dickerman et al. ( )
Chiu et al. ( ) Maringe et al. ( ) Ben-Michael, Feller,
and Stuart ( ) Gaber et al. ( ) Cashin et al. ( ) Fu
et al. ( ) Moreno-Betancur, Wijesuriya, and Carlin
( )

2008 2010
2011 2016

2016 2017
2018 2019 2019

2020 2020
2021 2024 2025

2025
2025
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Discussion/Questions
1. What pregnancy research questions are you working on?

2. How might you apply target trial thinking?

3. What challenges do you anticipate?

4. What tools or resources would be most helpful?
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Thank you!
email: l.smith@northeastern.edu
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